首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量. (1)求a; (2)求A的特征向量; (3)求可逆矩阵P,使得P-1AP为对角阵.
设A=有三个线性无关的特征向量. (1)求a; (2)求A的特征向量; (3)求可逆矩阵P,使得P-1AP为对角阵.
admin
2019-08-23
44
问题
设A=
有三个线性无关的特征向量.
(1)求a;
(2)求A的特征向量;
(3)求可逆矩阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由|λE-A|=[*]=(λ+2)(λ-1)
2
=0 得矩阵A的特征值为λ
1
=-2,λ
2
=λ
3
=1. 因为A有三个线性无关的特征向量,所以A可以相似对角化,从而,r(E-A)=1, 由E-A=[*]得a=-1. (2)将λ=-2代入(λE-A)X=0,即(2E+A)X=0。 由2E+A=[*] 得λ=-2对应的线性无关的特征向量为α
1
=[*]; 将λ=1代入(λE-A)X=0,即(E-A)X=0, 由E-A=[*] 得λ=1对应的线性无关的特征向量为α
2
=[*],α
3
=[*]. (3)令P=[*],则P
-1
AP=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/B7N4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,且f(1)-f(0)=1.证明:
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
假设λ为n阶可逆矩阵A的一个特征值,证明:为A的伴随矩阵A*的特征值.
假设λ为n阶可逆矩阵A的一个特征值,证明:为A-1的特征值;
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
已知矩阵A=(aij)3×3的第1行元素分别为a11=1,a12=2,a13=一1.又知(A*)T=,其中A*为A的伴随矩阵.求矩阵A.
设向量组线性相关,但任意两个向量线性无关.求参数t.
设A,B均为n阶矩阵,且A+B=AB.(1)证明A-E可逆;(2)证明AB=BA.
随机试题
滑块卡瓦打捞矛卡瓦表面热处理后,处理层深度为5~9mm。()
谈论梅子驯起唾液分泌是()
“吃不到葡萄说葡萄酸”这种心理防御机制称为_______。
A.出现进行性气短B.X线胸片示“蓬发状心影”C.锥体外系神经障碍表现如肌张力增加D.神经衰弱综合征,牙龈出血,手指颤抖E.神经、消化、造血系统改变,无牙龈出血慢性汞中毒的特点是()
产妇,27岁。因子宫收缩过强,出现急产,对于其新生儿正确的护理措施是
在操作系统中,文件治理的主要功能是()
对MSN常规选项进行设置,使登录到Windows时自动运行Messenger(R),联系人联机时显示通知,收到电子邮件时通知我。
某人的电子邮箱为Rjspks@163.com,对于Rjspks和163.com的正确理解为(33),在发送电子邮件时,常用关键词使用中,(34)是错误的。若电子邮件出现字符乱码现象,以下方法中(35)一定不能解决该问题。
ViennaViennawasoneofthemusiccentersofEuropeduringtheclassicalperiod,andHaydn,Mozart,andBeethovenwereall
Theproblemofchildrenviolencehasbeendiscussedthoroughlyinthewakeoflastweek’stragedyinArkansas.Somediscussions
最新回复
(
0
)