首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量. (1)求a; (2)求A的特征向量; (3)求可逆矩阵P,使得P-1AP为对角阵.
设A=有三个线性无关的特征向量. (1)求a; (2)求A的特征向量; (3)求可逆矩阵P,使得P-1AP为对角阵.
admin
2019-08-23
67
问题
设A=
有三个线性无关的特征向量.
(1)求a;
(2)求A的特征向量;
(3)求可逆矩阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由|λE-A|=[*]=(λ+2)(λ-1)
2
=0 得矩阵A的特征值为λ
1
=-2,λ
2
=λ
3
=1. 因为A有三个线性无关的特征向量,所以A可以相似对角化,从而,r(E-A)=1, 由E-A=[*]得a=-1. (2)将λ=-2代入(λE-A)X=0,即(2E+A)X=0。 由2E+A=[*] 得λ=-2对应的线性无关的特征向量为α
1
=[*]; 将λ=1代入(λE-A)X=0,即(E-A)X=0, 由E-A=[*] 得λ=1对应的线性无关的特征向量为α
2
=[*],α
3
=[*]. (3)令P=[*],则P
-1
AP=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/B7N4777K
0
考研数学二
相关试题推荐
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
假设λ为n阶可逆矩阵A的一个特征值,证明:为A的伴随矩阵A*的特征值.
已知A=可对角化,求可逆矩阵P及对角矩阵∧,使P-1AP=A.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
已知矩阵A=(aij)3×3的第1行元素分别为a11=1,a12=2,a13=一1.又知(A*)T=,其中A*为A的伴随矩阵.求矩阵A.
设B=2A—E,证明:B2=E的充分必要条件是A2=A.
设将上述关系式表示成矩阵形式;
随机试题
十二经脉的别络都是从
合同示范文本是由具有一定权威性的综合部门主持,广听取了各方面特别是消费者的意见之后,按一定程序形成并颁布的,在本行业中有示范作用的合同文本。它具有规范性、完备性、适用性的特点。合同法提倡使用合同范本。但没有使用范本的合同,合同法仍然认定它是有效合同。
()是限制自由的刑罚方法,是我国独创的刑罚种类。
已知椭圆C:=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=_________.
“眼观六路、耳听八方”所形容的是注意的转移。()
设M、N都是自然数,记PM是自然数M的各位数字之和,PN是自然数N的各位数字之和。又记M*N是M除以N的余数。已知M+N=4084,那么(PM+PN)*9的值是()。
已知“爱情并不都是完美的”为真,则据此不能确定真假的命题是()。(1)所有的爱情都是完美的;(2)所有的爱情都不完美;(3)有的爱情是完美的;(4)有的爱情是不完美的。
当一个人的思维发展处于“每个人对问题的看法都是不一样的”时,其思维发展处于()。
根据下列材料回答问题。2012年Z省W市实现文化及相关产业增加值相比上年增长9.6%,在文化产品制造业中,文化印刷、文化用品制造和工艺美术品制造三大主导行业,2012年分别实现增加值21.82亿元、11.57亿元和6.62亿元。与全省结构相比,W市
ARTANDCULTUREOFPACIFICNORTHWESTCOMMUNITIES(1)The1,600-kilometerstretchofthenorthwesternPacificcoastofNorth
最新回复
(
0
)