首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量. (1)求a; (2)求A的特征向量; (3)求可逆矩阵P,使得P-1AP为对角阵.
设A=有三个线性无关的特征向量. (1)求a; (2)求A的特征向量; (3)求可逆矩阵P,使得P-1AP为对角阵.
admin
2019-08-23
45
问题
设A=
有三个线性无关的特征向量.
(1)求a;
(2)求A的特征向量;
(3)求可逆矩阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由|λE-A|=[*]=(λ+2)(λ-1)
2
=0 得矩阵A的特征值为λ
1
=-2,λ
2
=λ
3
=1. 因为A有三个线性无关的特征向量,所以A可以相似对角化,从而,r(E-A)=1, 由E-A=[*]得a=-1. (2)将λ=-2代入(λE-A)X=0,即(2E+A)X=0。 由2E+A=[*] 得λ=-2对应的线性无关的特征向量为α
1
=[*]; 将λ=1代入(λE-A)X=0,即(E-A)X=0, 由E-A=[*] 得λ=1对应的线性无关的特征向量为α
2
=[*],α
3
=[*]. (3)令P=[*],则P
-1
AP=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/B7N4777K
0
考研数学二
相关试题推荐
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
设f(x)在[0,1]上连续,且f(1)-f(0)=1.证明:
设α1,α2,…,αn是n个n维向量,且已知α1x1+α2x2+…+αnxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
已知A=可对角化,求可逆矩阵P及对角矩阵∧,使P-1AP=A.
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:
设向量组线性相关,但任意两个向量线性无关.求参数t.
设B=2A—E,证明:B2=E的充分必要条件是A2=A.
设A=E+ααT,其中α=(α1,α2,α3)T,且αTα=2,求A的特征值和特征向量.
设将上述关系式表示成矩阵形式;
随机试题
“一国两制”不符合马克思主义国家学说,会改变我国社会主义的主体地位。
《素问.上古天真论》“恬恢虚无”指的是
以下关于加速实验法的描述正确的是
下列血栓形成条件的叙述,不正确的是
背中央2~4行鳞片强烈起棱,脊部高耸成屋脊状的药材是
如图6—1—14所示圆柱体的直径d=2m,左侧水深h1=2m,右侧水深h2=1m,则该圆柱体单位长度所受到的静水总压力的水平分力和铅垂分力分别为()。
下列朝代,根据原来的部族、部落联盟的名称定国名的有()
现代意义上第一个独立的、职能化的人事行政管理机构产生于()。
某企业为了构建网络办公环境,每位员工使用的计算机上应当具备()设备。
A、 B、 C、 B图片为收银台,A是付款10美元,B是付款20美元,C是付款30美元。
最新回复
(
0
)