首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. 求A的特征值和特征向量;
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. 求A的特征值和特征向量;
admin
2018-11-11
62
问题
设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
求A的特征值和特征向量;
选项
答案
设 Aξ=(E+αβ
T
)ξ=λξ. ① 两端左边乘β
T
, β
T
(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ, 若β
T
ξ≠0,则λ一1+β
T
α=3;若β
T
ξ=0,则由①式得λ=1. 当λ=1时, [*] 即[b
1
,b
2
,…,b
n
]X=0,因α
T
β=2,故α≠0,β≠0,设b
1
≠0,则 ξ
1
=[b
2
,一b
1
,0,…,0]
T
,ξ
2
=[b
3
,0,一b
1
,…,0]
T
,…,ξ
n-1
=[b
n
,0,…,0,一b
1
]
T
, 即A的对应于特征值1的特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,k
1
,k
2
,…,k
n-1
为不全为零的常数; 当λ=3时, (3E-A)X=(2E-αβ
T
)X=0, ξ
n
=α一[a
1
,a
2
,…,a
n
]
T
, 即A的对应于特征值3的特征向量为k
n
考
n
,k
n
为不为零的常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/WDj4777K
0
考研数学二
相关试题推荐
设f(x,y)为连续函数,且f(x,y)=xy+其中D是由y=0,y=x2,x=1所围成的区域,求f(x,y).
设是f(x)的一个原函数,F(t)=∫0tdx∫0xxf(y)dy,则F"(t)=_____.
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)。是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
设矩阵已知线性方程组Ax=β有解但不唯一,试求:a的值;
设矩阵其行列式|A|=一1,又A的伴随矩阵A*有一个特征值λ0,A*的属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c和λ0的值.
设函数f(x,y)具有二阶连续偏导数,且满足f(0,0)=1,fx’(0,0)=2,fy’(0,y)=一3以及fxx"(x,y)=y,fxy"(x,y)=x+y,求f(x,y)的表达式.
n元实二次型正定的充分必要条件是()
设二次型f(x1,X2,X3)=a()+2x1x2+2x2x3+2x1x3的正、负惯性指数分别为1,2,则___________.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
随机试题
王禹偁的_______有意效法自居易的平易诗风,其近体诗、绝句则不乏_______的格调,在文的方面,王禹偁既能写古文,又是四六文的高手,王禹偁的文章多有________。
对于二尖瓣狭窄伴主动脉瓣关闭不全,下列哪项不正确()(2000年)
《药品管理法》规定,劣药是指
A.机械性肠梗阻B.单纯性肠梗阻C.麻痹性肠梗阻D.痉挛性肠梗阻E.绞窄性肠梗阻外伤性腹膜后巨大血肿易发生()
依据我国现行法律的规定及相关诉讼理论,关于当事人诉讼权利能力,下列哪一选项是正确的?()(司考.四川.2008.3.48)
房地产居间服务应有如下意识()。
项目结构图是一个重要的组织工具,其反映的是()。
一般会计软件都提供数据备份功能。()
现行《宪法》规定,中央军事委员会主席向()负责。
【2009-3】人力资本理论认为,人力资本是经济增长的关键,教育是形成人力资本的重要力量。这一理论的缺陷是()。
最新回复
(
0
)