首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. 求A的特征值和特征向量;
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. 求A的特征值和特征向量;
admin
2018-11-11
63
问题
设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
求A的特征值和特征向量;
选项
答案
设 Aξ=(E+αβ
T
)ξ=λξ. ① 两端左边乘β
T
, β
T
(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ, 若β
T
ξ≠0,则λ一1+β
T
α=3;若β
T
ξ=0,则由①式得λ=1. 当λ=1时, [*] 即[b
1
,b
2
,…,b
n
]X=0,因α
T
β=2,故α≠0,β≠0,设b
1
≠0,则 ξ
1
=[b
2
,一b
1
,0,…,0]
T
,ξ
2
=[b
3
,0,一b
1
,…,0]
T
,…,ξ
n-1
=[b
n
,0,…,0,一b
1
]
T
, 即A的对应于特征值1的特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,k
1
,k
2
,…,k
n-1
为不全为零的常数; 当λ=3时, (3E-A)X=(2E-αβ
T
)X=0, ξ
n
=α一[a
1
,a
2
,…,a
n
]
T
, 即A的对应于特征值3的特征向量为k
n
考
n
,k
n
为不为零的常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/WDj4777K
0
考研数学二
相关试题推荐
设函数f(x)在开区间(a,b)内可导,证明:当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界.
曲线点处的法线方程.
设某班车起点上车人数X服从参数为λ(λ>0)的泊松分布,如果每位乘客在中途下车的概率为P(0<p<1),并且他们在中途下车与否是相互独立的.用Y表示在中途下车的人数,求(1)在发车时有n个乘客的条件下,中途有m个人下车的概率;(2)(X,Y)的联合概率分布
已知x,y,z为实数,且ex+y2+|z|=3.证明exy2|z|≤1.
设是f(x)的一个原函数,F(t)=∫0tdx∫0xxf(y)dy,则F"(t)=_____.
设函数f(x)具有连续的二阶导数,且点(0,f(0))是函数y=f(x)对应曲线的拐点,则
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设函数fi(x)(i=1,2)具有二阶连续导数,且fi(x0)
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
随机试题
A、It’swarmandwet.B、It’scoldandwet.C、It’scoolanddry.D、It’shotanddry.A
Anewcameasasurprisethatanelderlywomandiedyesterdayafter【21】knockeddownbyamotoristwhohadmadeno【22】tobrake(刹
某患者,男,59岁,BP140/95mmHg,他的血压属于()
脂质体由类脂质双分子层膜构成,其双分子层厚度约为4nm。类脂质膜的主要成分为磷脂和胆固醇。由于结构上类似生物膜,故脂质体又被称为“人工生物膜”。其在临床应用存在的问题主要有()。
根据包衣所用材料的不同,包衣片可分为()。
工程量清单汇总表中的项目包括()
个人信用贷款期限在1年(含1年)以内的,一般采取()的还款方式。
原持有的对被投资单位具有控制的长期股权投资,因部分处置等原因导致持股比例下降,不能再对被投资单位实施控制、共同控制或重大影响的,应改按金融工具确认和计量准则进行会计处理,丧失控制之日剩余股权的公允价值与账面价值之间的差额计入当期投资收益。()
在下列设置小海龟的基本命令中,()是转向命令。
Themajorityofthepopulationintheworldmightdrinkonlytwolitersofwateraday,buttheyconsumeabout3,000litersada
最新回复
(
0
)