首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
admin
2018-11-11
48
问题
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
选项
答案
令φ(x)=e
x
f(x),则φ’(x)=e
x
[f(x)+f’(x)], 由|f(x)+f’(x)|≤1得|φ’(x)|≤e
x
,又由f(x)有界得φ(-∞)=0,则 φ(x)=φ(x)-φ(-∞)=∫
-∞
x
φ’(x)dx,两边取绝对值得 e
x
|f(x)|≤∫
-∞
x
|(x)|dx≤∫
-∞
x
e
x
dx=e
x
,所以|f(x)|≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/nJj4777K
0
考研数学二
相关试题推荐
行列式
设f(x)在(一∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=在(一∞,0)和(0,+∞)都是单调增加的.
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g(a)=g(b)=1,f’(x)≠0.证明存在ξ,η∈(a,b),使
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:(1)至少存在一点ξ∈(0,1),使得f(ξ)=1—ξ;(2)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设平面区域D由直线及两条坐标轴所围成.记则有()
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续.②f(x,y)在点(x0,y0)处两个偏导数连续.③f(x,y)在点(x0,y0)处可微.④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“”表示可由性质P推
设函数f(x)=如果f"(0)存在,求常数a,b.
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α1+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么条件时,β1β2……βs也为Ax=0的一个基础解系.
求下列积分.(1)设(2)设函数f(x)在[0,1]连续且
(2014年)设二次型f(χ1,χ2,χ3)=χ12-χ22+2aχ1χ3+4χ2χ3的负惯性指数为1,则a的取值范围是_______.
随机试题
垄断资本是怎样利用国家来为其经济利益服务的?
A.妊娠满28周后,胎儿及附属物全部从母体排出B.孕满28周至不满37周娩出者C.孕满42周及以后分娩者D.孕满37周而不满42周分娩者E.孕不满28周,胎儿不足1000g而娩出者
划分委托监理合同包的工作范围时,通常考虑的因素包括( )。
课堂教学、科学研究与社会实践是高校培养合格人才的三个基本途径。()
道德修养与社会实践密切相连。一个人只有在日常生活中,即在与别人、与集体发生的各种关系中,才较清楚地认识到自己的行为哪些是道德的,哪些是不道德的。同样,克服不道德的思想和行为,也只有在社会实践中才能实现。这段文字意在说明()。
根据以下资料,回答下列问题。2017年我国成年国民图书阅读率为59.1%,比上年增加0.3个百分点;报纸阅读率为37.6%,比上年降低2.1个百分点;期刊阅读率为25.3%,比上年增加1个百分点。2017年我国成年
婴儿主要的思维形式是
张教授:莎士比亚名下的戏剧和诗歌,其实不是他写的,而是伊丽莎白一世写的。莎士比亚是个没有受过多少教育的乡下人,而伊丽莎白一世则完全具有完成这些天才作品的知识和教养。李研究员:你的断定是不能成立的。因为如果伊丽莎白写了像《哈姆雷特》这样的名剧的话,她早
READINGPASSAGE1Youshouldspendabout20minutesonQuestions1-13,whicharebasedonReadingPassage1below. Cleaner
A、Wecanonlyovercomedifficultieswithfriends’help.B、Ourbreathingwillbedeepandregular.C、Ourstresslevelswillrise.
最新回复
(
0
)