首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正定矩阵,证明:|E+A|>1.
设A是n阶正定矩阵,证明:|E+A|>1.
admin
2018-11-11
50
问题
设A是n阶正定矩阵,证明:|E+A|>1.
选项
答案
因为A是正定矩阵,所以存在正交阵Q,使得 Q
T
AQ=[*] 其中λ
1
>0,λ
2
>0,…,λ
n
>0, 因此Q
T
(A+E)Q=[*] 于是|Q
T
(A+E)Q|=|A+E|=(λ
1
+1)(λ
2
+1)…(λ
n
+1)>1.
解析
转载请注明原文地址:https://kaotiyun.com/show/IJj4777K
0
考研数学二
相关试题推荐
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设A为n阶方阵(n≥2),A*是A的伴随矩阵,试证:当r(A)=n—l时,r(A*)=1;
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
当x→0时3x一4sinx+sinxcosx与xn为同阶无穷小量,试求n.
设函数f(x)在[0,2]上连续,在(0,2)内可导,且f(0)=1,f(1)=0,f(2)=3,证明至少存在一点ξ,使得f’(ξ)=0.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)。是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设函数f(x)=如果f"(0)存在,求常数a,b.
求一个正交变换把二次曲面的方程3x2+5y2+5z2+4xy一4xz—10yz=1化成标准方程.
设有一半径为R长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式证明:当x≥0时,成立不等式e-x≤f(x)≤1。
随机试题
除可以当场作出的行政处罚外,行政机关发现公民、法人或者其他组织有依法应当给予行政处罚的行为的,必须全面、客观、公正地调查。
生命最基本的表现是()
A、在成牙本质细胞和矿化牙本质之间是一层未钙化的牙本质B、牙本质钙质小球之间遗留的未钙化间质C、在冠部靠近釉质和根部靠近牙骨质最先形成的牙本质D、牙齿发育完成后形成的牙本质E、釉质表面因磨损、酸蚀、龋病等而遭受破坏时,部分
下列哪些情况属于可以减征个人所得税的情形?
背景资料:某承包人根据《水利水电工程标准施工招标文件》(2009版)与发包人签订某引调水工程引水渠标段施工合同,合同约定:(1)合同工期465天,2015年10月1日开工。(2)签约合同价为5800万元。(3)履约保证金兼具
关于价值型股票,下列说法正确的有( )。
下列各项中,符合《仲裁法》规定的有()。
彝族口味上爱好()。
发散思维又称扩散思维、()或多向思维。
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。就给定材料所反映的主要问题,用1200字左右的篇幅,自拟标题进行论述。要求中心明确,内容充实,论述深刻,有说服力。
最新回复
(
0
)