首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量. 若A2ξ=μξ,问ξ是否必是A的特征向量,说明理由;
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量. 若A2ξ=μξ,问ξ是否必是A的特征向量,说明理由;
admin
2014-04-23
49
问题
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量.
若A
2
ξ=μξ,问ξ是否必是A的特征向量,说明理由;
选项
答案
ξ不一定是A的特征向量,例如[*]故任意非零向量都是A
2
的特征向量,故 [*] 是A
2
的特征向量,但不是A的特征向量,因[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/BA54777K
0
考研数学一
相关试题推荐
试证向量a=-i+3j+2k,b=2i-3j-4k,c=-3i+12j+6k在同一平面上.
已知单位向量与三个坐标轴的夹角相等,B是点M(1,-3,2)关于点N(-1,2,1)的对称点,求
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示:
求下列向量组的秩,并求一个最大无关组:
求下列向量组的秩,并求一个最大无关组:
设向量组a1,a2,a3,线性无关,判断向量组b1,b2,b3的线性相关性:b1=a1+2a2+3a3,b2=2a1+2a2+4a3,b3=3a1+a2+3a3.
设矩阵A=aaT+bbT,这里a,b为n维列向量,证明:当a,b线性相关时,R(A)≤1.
随机试题
蓝色革命:指人类向水域索取食物的重大技术革命的统称。下列行为与“蓝色革命”不符的是()。
胁痛的病位主要是在
牙髓炎开髓引流的注意事项如下,除外A.局麻下进行B.锐利的钻针C.近髓处穿通D.不穿通髓腔E.穿髓孔出血
A.收敛止血、行血散瘀B.温经止血、散寒止痛C.温中止血、止呕、止泻D.收敛止血E.凉血止血、活血化瘀
关于花岗石特征的说法,正确的有()。
计算工会经费、职工福利费和职工教育经费的纳税调整额为()万元。
下面不属于商业信用的是()。
GB/T19001—2000标准对设计和开发的要求是针对()的设计和开发。
依据课程层级的不同,古德莱德提出了五种类型的课程。据此,由教育行政部门规定的课程方案和教材属于()。
Britainhaslawstomakesurethatwomenhavethesameopportunitiesasmenineducation,jobsandtraining.Butit’sstillunus
最新回复
(
0
)