首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
admin
2019-03-23
43
问题
已知二次型f(x
1
,x
2
,x
3
)=(1—a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2。
求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形。
选项
答案
当a=0时,A=[*],由特征多项式 |λE—A|=[*] =(λ—2)[(λ—1)
2
—1]=λ(λ—2)
2
=0, 得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0。 当λ=2时,由(2E—A)x=0及系数矩阵 [*] 得两个线性无关的特征向量α
1
=(1,1,0)
T
,α
2
=(0,0,1)
T
。 当λ=0时,由(OE—A)x=0及系数矩阵 [*] 得特征向量α
3
=(1,—1,0)
T
。 容易看出,α
1
,α
2
,α
3
已两两正交,故只需将它们单位化,即得 [*] 那么令Q=(γ
1
,γ
2
,γ
3
)=[*],则在正交变换x=Qy下,二次型f(x
1
,x
2
,x
3
)化为标准形f(x
1
,x
2
,x
3
)=2y
1
2
+2y
2
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/BHV4777K
0
考研数学二
相关试题推荐
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
设A是n阶实反对称矩阵,证明E+A可逆.
设3阶矩阵A=,A-1XA=XA+2A,求X.
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
设f(x)是连续函数,a,b为常数,则下列说法中不正确的是[].
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2化之积成反比,比例系数为k=,求y=y(x).
下列说法正确的是().
一条生产线的产品成箱包装,每箱的重量是随机的.假设平均重50千克,标准差为5千克.如果用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保证不超载的概率大于0.977,((2)=0.977.)
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由新招收的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成αn=求矩阵A的
随机试题
A.72GyB.100GyC.89.8GyD.111.4GyE.84Gy假设早反应组织α/β=10Gy,晚反应组织α/β=3Gy,常规治疗2Gy×1次/天,每周5次×6周,则早反应组织有效生物剂量为
甲电视机厂因效益不好,经营困难,甲厂遂在电视台做广告说自己销售的电视机就是乙电视机厂(知名厂家)生产的电视机,则该行为构成何种不正当竞争行为?
合同条件规定,除了()的情况外,暂停施工令发布后均应给承包商以补偿。
下列各项货物适用的增值税税率正确的是()。
西方流传的《帝国亡于铁钉》一书中有一首民谣写到:“铁钉缺,马蹄裂;马蹄裂,战马蹶;战马蹶,骑士跌;骑士跌,军团削;军团削,战士折;战士折,帝国灭”。马蹄铁上一个钉子的脱落和丢失,本是初始条件下的十分微小的事物,是一个细节。我们谁也不会误解为一个马蹄上的铁钉
同事工作散漫。领导安排他和你一起工作,你怎么办?
一切为了群众,就是要把全心全意为人民服务的思想与履行自己的职责统一起来,一方面有效地打击违法犯罪;另一方面保障人民群众的权利和利益不受侵犯。()
给定资料1.2014年10月15日,中共中央总书记、国家主席、中央军委主席习近平在北京主持召开文艺工作座谈会并发表重要讲话。习近平强调,改革开放以来,我国文艺创作迎来了新的春天,产生了大量脍炙人口的优秀作品。同时,也不能否认,在文艺创作方
20世纪80年代被认为是一个被自私的个人主义破坏了社会凝聚力的时代。但是,这一时代特征在任何时代都有。在整个人类历史发展过程中,所有人类行为的动机都是自私的,从人类行为更深层次看,即使是最无私的行为,也是对人类自身自私的关心。以下哪项最能揭示上述论证中所存
[*]
最新回复
(
0
)