首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
admin
2019-03-23
57
问题
已知二次型f(x
1
,x
2
,x
3
)=(1—a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2。
求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形。
选项
答案
当a=0时,A=[*],由特征多项式 |λE—A|=[*] =(λ—2)[(λ—1)
2
—1]=λ(λ—2)
2
=0, 得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0。 当λ=2时,由(2E—A)x=0及系数矩阵 [*] 得两个线性无关的特征向量α
1
=(1,1,0)
T
,α
2
=(0,0,1)
T
。 当λ=0时,由(OE—A)x=0及系数矩阵 [*] 得特征向量α
3
=(1,—1,0)
T
。 容易看出,α
1
,α
2
,α
3
已两两正交,故只需将它们单位化,即得 [*] 那么令Q=(γ
1
,γ
2
,γ
3
)=[*],则在正交变换x=Qy下,二次型f(x
1
,x
2
,x
3
)化为标准形f(x
1
,x
2
,x
3
)=2y
1
2
+2y
2
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/BHV4777K
0
考研数学二
相关试题推荐
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
证明:与基础解系等价的线性无关的向量组也是基础解系.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(n)=f(0);
设二次型f=2χ12+2χ22+aχ32+2χ1χ2+2bχ1χ3+2χ2χ3经过正交变换X=QY化为标准形f=y12y22+4y32,求参数a,b及正交矩阵Q.
下列说法正确的是().
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
随机试题
IcanclearlyrememberthefirsttimeImetMr.Andrews,myoldheadmaster,【C1】______thatwasovertwentyyearsago.Duringthe
关于胎盘进行物质交换及转运的方式,正确的是( )。
化学结构中含有羧基的药物有
A.用药方法B.配制浓度C.合理用药信息D.常见疾病治疗E.定期对药物的使用和管理进行科学评估属于患者用药咨询内容的是()
市场细分不仅费开发企业带来良好的经济效益,而且也创造了良好的社会效益,这说明市场细分具有()的作用。
关于钻孔灌注桩施工中护筒的作用说法,错误的是()。
下列各项不属于假设检验中判断错误种类的是()。
汉钟离到人间传授法术,指导人们如何“点石成金”。人们蜂拥而来求艺,唯独吕洞宾问道:“点石成金之后,金子还会变成石头吗?”汉钟离答道:“会,但那是三千年以后的事情了。”吕洞宾大惊失色:“如果有人三千年后本想靠着一块金子来度日,但金子却变成了石头,那岂不是害了
设有一薄板,其边沿为一抛物线,如图1-3-3所示,若顶点恰在水面上,试求薄板所受的静压力,并求将薄板下沉多深,压力加倍?
Amongthecollegestudentsnowadays,thereisthetendencytoattachtoomuchimportancetoforeignholidays,whileneglectingo
最新回复
(
0
)