首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设,证明当n→∞时,数列{xn}极限存在,并求其值
设,证明当n→∞时,数列{xn}极限存在,并求其值
admin
2021-02-25
67
问题
设
,证明当n→∞时,数列{x
n
}极限存在,并求其值
选项
答案
首先证明数列{x
n
}是单调递增的. x
1
<x
2
显然成立. 假设x
k-1
<x
k
成立,则有 [*] 即x
k
<x
k+1
成立. 由数学归纳法知,对任何正整数n,均有x
n
<x
n+1
成立,从而数列{x
n
}单调递增. 又因为x
n
<2成立,即数列{x
n
}有上界. 根据单调有界原理便知数列{x
n
}收敛. 令[*]两边取极限得 l
2
=l+1 考虑到l>0,解得[*], 因此 [*].
解析
转载请注明原文地址:https://kaotiyun.com/show/BY84777K
0
考研数学二
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0.
设f(χ)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得∫abf(χ)dχ=(b-a)ff〞(ξ).
(1)由方程sinχy+ln(y-χ)=χ确定函数y=y(χ),求.(2)设f(χ)=,求df(χ)|χ=0.(3)设y=y(χ)是由eχ-χ+y-2=0确定的隐函数,则y〞(0)=_______.
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且
求下列函数的导数:
设λ为可逆方阵A的特征值,且χ为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且χ为对应的特征向量;(3)为A*的特征值,且χ为对应的特征向量.
用配方法化二次型f(χ1,χ2,χ3)=χ12+2χ1χ2+2χ1χ3-4χ32为标准形.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设f(x)=|x|sin2x,则使导数存在的最高阶数n=()
随机试题
甘草的解毒作用是
一般认为,下颌骨体部骨折行牙弓夹板颌间固定的时间应该为
下列情形,保险公司可以解除保险合同的是()。
新开发的商品住宅区内依法属于全体业主共有的物业服务用房的房屋登记,由()。
根据《水利水电工程等级划分及洪水标准》(SL252—2017),水利水电工程等别分为()等。
出口产品质量检验工作职能有()
国有资产依其分布状况可分为()。
《学记》中的“学不躐等”、“不陵节而施”、“杂施而不孙,则坏乱而不修”等反映了教学的()。
下列关于遗嘱的形式的说法,错误的是
Whenisadriverlikelytohaveasleep-relatedaccidentaccordingtoresearchers?
最新回复
(
0
)