首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,…,αm),其中α1,α2,α3,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,k3,…,km,皆有k1α1+k2α2+k3α3+...+kmαm≠0,则( )。
设A=(α1,α2,α3,…,αm),其中α1,α2,α3,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,k3,…,km,皆有k1α1+k2α2+k3α3+...+kmαm≠0,则( )。
admin
2021-11-25
43
问题
设A=(α
1
,α
2
,α
3
,…,α
m
),其中α
1
,α
2
,α
3
,…,α
m
是n维列向量,若对于任意不全为零的常数k
1
,k
2
,k
3
,…,k
m
,皆有k
1
α
1
+k
2
α
2
+k
3
α
3
+...+k
m
α
m
≠0,则( )。
选项
A、m>n
B、m=n
C、存在m阶可逆阵P,使得
D、若AB=O,则B=O
答案
D
解析
因为对任意不全为零的常数k
1
,k
2
,k
3
,…,k
m
,有k
1
α
1
+k
2
α
2
+k
3
α
3
+...+k
m
α
m
≠0,所以向量组α
1
,α
2
,α
3
,…,α
m
线性无关,即方程组AX=0只有零解,故若AB=O,则B=O,选D.
转载请注明原文地址:https://kaotiyun.com/show/Bay4777K
0
考研数学二
相关试题推荐
设向量组(I)a1,a2,a3;(II)a1,a2,a3,a4;(III)a1,a2,a3,a5,若向量组(I)与向量组(II)的秩为3,而向量组(III)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
设有三个线性无关的特征向量,求a及An.
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
设A为m阶正定矩阵,B为m×n阶实矩阵,证明:BTAB正定的充分必要条件是r(B)=n.
设P为可逆矩阵,A=PTP.证明:A是正定矩阵。
设A为n阶非奇异矩阵,a是n维列向量,b为常数,.证明PQ可逆的充分必要条件是aTA-1a≠b.
曲线y=(0≤x≤1)绕x轴旋转一周所得的旋转曲面的面积为__________。
设三角形三边的长分别为a、b、c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并要求求出这三个相应的距离.
“f(x)在点x=x。处有定义”是当x→x。时f(x)有极限的[],
设y=y(x)是二阶线性常系数微分方程y’’+Py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
随机试题
重新确立实事求是思想路线是在党的【】
一个小型公司内各个办公室中的计算机进行联网,这个网络属于________。
简述生态学研究的基本途径和方法。
A.子宫阔韧带B.子宫圆韧带C.子宫主韧带D.骶子宫韧带E.卵巢固有韧带维持子宫后曲的韧带
链球菌感染后急性肾小球肾炎与IgA肾病的根本不同是
容易在乳汁中排泄的药物是
下列各项中,属于账实核对主要内容的有()。
导游人员送旅游者乘火车、轮船离站,应提前()分钟到达车站码头。
口袋A内装有一个红球,口袋B内装有一红一白两球。某人闭着眼睛从B中随机摸出一球。放人A;再从A中随机摸出一球,发现是红色的。请问,A中剩余的球也为红色的概率是多少?
______isthenationalsymbolofAustralia.
最新回复
(
0
)