首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2……αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
设α1,α2……αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
admin
2017-07-10
72
问题
设α
1
,α
2
……α
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
选项
答案
必要性:a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n.对任一n维向量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关.综上所述r(a
1
,a
2
,…,a
n
,b)=n.又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示.充分性:已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由a
1
,a
2
,…,a
n
,线性表示,即r(ε
1
,ε
2
,…,ε
n
) =n≤r(a
1
,a
2
,…,a
n
),又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n.综上,r(a
1
,a
2
,…,a
n
)=n.所以a
1
,a
2
,…,a
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bet4777K
0
考研数学二
相关试题推荐
[*]
证明:[*]
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
证明下列函数在(-∞,+∞)内是连续函数:(1)y=3x2+1(2)y=cosx
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均为实对称矩阵时,试证(I)的逆命题成立.
设y=f(x2+b)其中b为常数,f存在二阶导数,求y〞.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
[*]按第一行展开,得递推关系式Dn=(1-an)Dn-1+anDn-2,依次递推即可.
随机试题
内毛细胞有1列,外毛细胞有3~5列,均位于指细胞之间。
CT成像的物理基础是
患者男,56岁。左下后牙自发性搏动疼痛4天,口含冰块可暂时缓解。检查:左下7远中可探及龋洞,叩诊不适,探诊敏感,龈缘红肿,探诊出血;左下8近中低位阻生,远中龈瓣形成盲袋,龈瓣红肿,食物嵌塞。X线片显示左下7远中龋坏,左下8近中低位阻生,无明显龋坏。主诉
糖尿病最常见最严重的急性并发症是
可用于区别甲型和乙型强心苷的反应有
按照《建设工程质量保证金管理暂行办法》规定,全部或者部分使用政府投资的建设项目,按工程价款结算总额()左右的比例预留保证金。
IPO是指()。
英国文学家菲尔丁(1707--1754)描述当时的英国时说:“当贵族在与君主进行华丽的竞争时,乡绅们翘首企盼获得贵族那样的地位,而商人们则从柜台后面步出,挤入乡绅空出的行列。”出现这种现象的原因是()
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:()
Thereisapopularbeliefamongparentsthatschoolsarenolongerinterestedinspelling.Thisis,however,a【S1】______Noschoo
最新回复
(
0
)