首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
admin
2018-11-20
95
问题
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫
-∞
+∞
g(x)dx,b=∫
-∞
+∞
h(y)dy存在且不为零,则X与Y独立,其密度函数f
X
(x),f
Y
(y)分别为
选项
A、f
X
(x)=g(x),f
Y
(y)=h(y).
B、f
X
(x)=ag(x),f
Y
(y)=bh(y).
C、f
X
(x)=bg(x),f
Y
(y)=ah(y).
D、f
X
(x)=g(x),f
Y
(y)=abh(y).
答案
C
解析
显然我们需要通过联合密度函数计算边缘密度函数来确定正确选项.由于
f
X
(x)=∫
-∞
+∞
f(x,y)dy=∫
-∞
+∞
g(x)h(y)dy=g(x)∫
-∞
+∞
h(y)dy=bg(x),
f
Y
(y)=∫
-∞
+∞
g(x)h(y)dx=ah(y),
又 1=∫
-∞
+∞
∫
-∞
+∞
f(x,y)dxdy=∫
-∞
+∞
g(x)dx∫
-∞
+∞
h(y)dy=ab,所以f(x,y)=g(x)h(y)=abg(x)h(y)=bg(x)ah(y)=f
X
(x)f
Y
(y),X与Y独立,故选(C).
转载请注明原文地址:https://kaotiyun.com/show/BfW4777K
0
考研数学三
相关试题推荐
随机变量(X,Y)的联合密度函数为f(x,y)=求(x,y)落在区域x2+y2≤内的概率.
证明:r(A)=r(ATA).
设A,B为n阶矩阵,证明:当P可逆时,Q也可逆.
飞机以匀速υ沿y轴正向飞行,当飞机行至0时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2υ.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为,求y=y(x).
设u=U(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
已知二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2bx2x3+2x1x3经正交变换化为标准形f(x1,x2,x3)=y22+2y32,则a,b取值为________.
设f=x12+x22+5x32+2ax1x2—2x1x3+4x2x3为正定二次型,则未知系数a的范围是________。
已知是正定矩阵,证明
随机试题
Myfatherwasaforemanofasugar-caneplantationinRioPiedras,PuertoRico.Myfirstjobwastodrivetheoxenthatplowedt
颅底骨折有脑脊液耳、鼻外漏时,处理错误的是
最适用于Hp胃黏膜标本运送的培养基是
单克隆抗体在医学实验室中的应用不包括
外阴瘙痒常见病因不包括
急性胃黏膜损害的主要临床表现是
某私营企业于2008年1月1日从某银行获得一笔3年期1000万元抵押贷款,2008年12月30日,由于该企业财务状况恶化,出现了拖欠利息超过90天的违约行为。为降低损失,该银行与企业磋商进行贷款重组,则下述重组措施中最不可行的是()。
甲、乙共同成立A有限责任公司(简称A公司),注册资本200万元,其中,甲持有60%股权,乙持有40%股权。2008年8月25日,A公司聘请李某担任公司总经理,负责公司日常经营管理。双方约定,除基本工资外,李某可从公司每年税后利润中提取1%作为奖金。同时,A
下列选项中,属于法治基本原则的有()(2011年法学综合课多选第25题)
改革、发展、稳定的关系是()。
最新回复
(
0
)