首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=xsinx-∫0x(x-t)f(t)dt,其中f(x)连续,求f(x).
设f(x)=xsinx-∫0x(x-t)f(t)dt,其中f(x)连续,求f(x).
admin
2019-03-21
25
问题
设f(x)=xsinx-∫
0
x
(x-t)f(t)dt,其中f(x)连续,求f(x).
选项
答案
将原方程改写为 f(x)=xsinx-x∫
0
x
f(t)dt+∫
0
x
tf(t)dt. 因为f(x)连续,所以方程的右端是可微的,因而左端的函数f(x)也可微.两端对x求导,又原式中令x=0,则原方程等价于 f(x)=xcosx+sinx-∫
0
x
f(t)dt,f(0)=0. (6.7) 同理,方程右端仍可微,所以f(x)存在二阶导数,再将(6.7)中的方程两边求导,并令x=0,则得(6.7)等价于 f’’(x)=-xsinx+2cosx-f(x),f’(0)=0,f(0)=0. 即y=f(x)满足微分方程的初值问题y’’+y=-xsinx+2cosx,y(0)=0,y’(0)=0. (6.8) 由于此方程的特征根为±i,所以其特解应具形式y
*
(x)=x(Ax+B)cosx+x(Cx+D)sinx.代入方程,求出系数A,B,C,D,则得其特解为y
*
(x)=[*]x
2
2cosx+[*]xsinx,进而方程的通解为 y=f(x)=[*]x
2
cosx+[*]xsinx+C
1
cosx+C
2
sinx. (6.9) 由f(0)=0可知C
1
=0,而由f’(0)=0又可推出C
2
=0,所以f(x)=[*]x
2
cosx+[*]xsinx.
解析
转载请注明原文地址:https://kaotiyun.com/show/BhV4777K
0
考研数学二
相关试题推荐
设3阶矩阵A=(aij)的行列式|A|=2,设初等矩阵试分别计算PiA与APi,并求det(PiA)与det(APi)的值,i=1,2,3.
设y=y(x)由方程组(*)确定,求
求下列极限:
证明奇次方程a0x2n+1+a1x2n+…+a2nx+a2n+1=0一定有实根,其中常数a0≠0.
设f(x)在(a,b)内可导,证明:x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单凋减少的充要条件是f(x0)+f’(x0)(x-x0)>f(x).(*)
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
设函数f(x)在区间[a,b]上连续,且恒大于零,证明:
证明:=0.
求定积分:(Ⅰ)J=∫-22min{2,x2}dx;(Ⅱ)J=∫-1x(1-|t|)dt,x≥-1.
随机试题
在会计制度设计时,必须完成并提交给各个方面的资料清单,各方面不包括
对行政管理中出现的失误,不仅要追究行政管理当事人责任,而且还要追究相关领导人责任的一种制度是【】
此时对诊断帮助最小的检查是对此患者的处置中,不适当的处置是
工业用地的最基本要求是“三通一平”,具体讲,在用地条件上,地形平坦,最适宜的地形坡度为()。
股份有限公司发起人可以用()作价出资。
A公司于2013年1月10日与B公司签订一份标的额为100万元的买卖合同,合同约定采用汇票结算方式。2月1日,A公司按照合同约定发出货物,B公司于2月10日签发一张见票后1个月付款的银行承兑汇票。3月5日A公司向C银行提示承兑并于当日获得承兑。3
2424×2423—2425×2422=()。
下列属于我国国家公务员的有()。
在美国这样的商业社会里,无论他们抛出了多少关乎人文、情怀、精神的辞藻,几乎所有艺术与技术,__________都是一门生意,即便是“教主”乔布斯和他的苹果也不例外。但这本身无可指责,也不__________这些公司和这些人缔造一个伟大的时代。依次填入画横线
A、Tosetupamooncolonyby2020.B、Tosendastronautsagaintothemoonby2020.C、Tocontinuethecurrentshuttlemissionsti
最新回复
(
0
)