首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=xsinx-∫0x(x-t)f(t)dt,其中f(x)连续,求f(x).
设f(x)=xsinx-∫0x(x-t)f(t)dt,其中f(x)连续,求f(x).
admin
2019-03-21
34
问题
设f(x)=xsinx-∫
0
x
(x-t)f(t)dt,其中f(x)连续,求f(x).
选项
答案
将原方程改写为 f(x)=xsinx-x∫
0
x
f(t)dt+∫
0
x
tf(t)dt. 因为f(x)连续,所以方程的右端是可微的,因而左端的函数f(x)也可微.两端对x求导,又原式中令x=0,则原方程等价于 f(x)=xcosx+sinx-∫
0
x
f(t)dt,f(0)=0. (6.7) 同理,方程右端仍可微,所以f(x)存在二阶导数,再将(6.7)中的方程两边求导,并令x=0,则得(6.7)等价于 f’’(x)=-xsinx+2cosx-f(x),f’(0)=0,f(0)=0. 即y=f(x)满足微分方程的初值问题y’’+y=-xsinx+2cosx,y(0)=0,y’(0)=0. (6.8) 由于此方程的特征根为±i,所以其特解应具形式y
*
(x)=x(Ax+B)cosx+x(Cx+D)sinx.代入方程,求出系数A,B,C,D,则得其特解为y
*
(x)=[*]x
2
2cosx+[*]xsinx,进而方程的通解为 y=f(x)=[*]x
2
cosx+[*]xsinx+C
1
cosx+C
2
sinx. (6.9) 由f(0)=0可知C
1
=0,而由f’(0)=0又可推出C
2
=0,所以f(x)=[*]x
2
cosx+[*]xsinx.
解析
转载请注明原文地址:https://kaotiyun.com/show/BhV4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=0处连续,下列命题错误的是
设A为4阶实对称矩阵,且A2+A=0.若A的秩为3,则A相似于
若连续函数f(x)满足关系式f(x)=∫02xdt+ln2则f(x)等于
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
[*]此极限属“”型,用洛必达法则.
要使ξ1=都是线性方程组AX=0的解,只要系数矩阵A为()
微分方程y’’-4y=e2x+x的特解形式为().
设A是n阶矩阵,α是n维列向量,若则线性方程组()
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设f(χ)=sinχ,f[φ(χ)]=1-χ2,则φ(χ)=_______,定义域为_______.
随机试题
设=l,其中l为-定值且(l≠0,l≠1),则f(x)在点x=a处
药物作用的强弱取决于:药物作用持续的久暂取决于:
男孩,3岁,自幼人工喂养,食欲极差,有时腹泻。身高85cm,体重7500g,皮肤干燥、苍白,腹部皮下脂肪厚度约0.3cm,脉搏缓慢,心音较低钝。假设此患儿出现哭而少泪。眼球结膜有毕脱斑,则有
锅炉、压力容器、电梯、起重机械等特种设备及其安全附件、安全保护装置的制造、安装、改造单位,应当经国务院()许可,方可从事相应的活动。
按照《公约》的规定,一项发盘的内容必须十分肯定,只有具备()才算十分确定。
根据《个人贷款管理暂行办法》有关贷款资金支付管理的规定,采用贷款人受托支付的,贷款人应()。
近代,地方自治制的警察管理体制的代表国家是()。
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
有以下程序:#include<stdio.h>main(){inta=0,b=0,c=0,d=0;printf(’’%d,%d,%d,%d\n’’,a,b,c,d);}程序的运行结果是()。
A、Mark’strainhasleftearlier.B、Mark’strainhasbeendelayed.C、Mark’strainisoftenlate.D、Markislikelytomissthetra
最新回复
(
0
)