首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 (1) 有解,证明:方程组 (2) 无解。
已知方程组 (1) 有解,证明:方程组 (2) 无解。
admin
2019-01-19
32
问题
已知方程组
(1)
有解,证明:方程组
(2)
无解。
选项
答案
用A
1
,[*]和A
2
,[*]分别表示方程组(1)与(2)的系数矩阵和增广矩阵,则[*]=A
2
T
。已知方程组(1)有解,故r(A
1
)=r([*])。 又由于(b
1
,b
2
,…,b
m
,1)不能由(a
11
,a
21
,…,a
m1
,0),(a
12
,a
22
,…,a
m2
,0),…,(a
1n
,a
2n
,…,a
mn
, 0)线性表示,所以 [*] 故r(A
1
T
)≠r([*]),再由r(A
1
T
)=r(A
1
)=r([*])=r(A
2
T
)=r(A
2
),可得r(A
2
)≠r([*]),所以方程组(2)无解。
解析
转载请注明原文地址:https://kaotiyun.com/show/BmP4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是来自总体X的简单随机样本,其中总体X有密度
设X1,X2,…,Xn是来自均值为θ的指数分布总体的样本,其中θ为未知,则下列估计量不是θ的无偏估计的为().
设x1,x2,x3,x4是来自总体X~N(1,2)的简单随机样本,且k(Xi一4)2服从χ2(n)分布,则常数k和x2分布的自由度n分别为().
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
设φ(x)=sinx2∫01f(tsinx2)dt,且存在,证明:当x→0时,dφ是xsinx2dx的同阶无穷小量.
已知a0=3,a1=5,对任意的n>1,有nan=an—1—(n一1)an—1.证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
假设某射手的命中率为p(0<p<1),他一次一次地对同一目标独立地射击直到恰好两次命中目标为止,以X表示首次命中已射击的次数,以Y表示射击的总次数,试求:(1)随机变量X和Y的联合概率分布;(2)随机变量Y关于X的条件概率分布;
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3.当λ满足什么条件时f(x1,x2,x3)正定?
随机试题
A.成型材料B.增稠剂C.遮光剂D.增塑剂E.防腐剂制备空胶囊时加入下列物质的作用是甘油是()。
张某因抢劫罪被某区人民法院判处有期徒刑8年。宣判后张某不服,以自己有法定从轻情节、原审法院量刑过重为由提起上诉。市中级人民法院对此案进行了二审。请问:中级人民法院在审理该上诉案件时,合议庭应当如何组成?
《生活饮用水卫生标准》(GB5749—2006)中氯化物含量高限是()mg/L。
A有限合伙企业(简称A企业)于2011年1月设立,出资人由20名有限合伙人和1名普通合伙人组成。普通合伙人为甲有限责任公司(简称甲公司)。合伙协议约定如下内容:(1)本企业主要从事生物制药行业的股权投资;(2)甲公司以其专业化的投资管理服务折价500万元出
【2009年】在识别和评估重大错报风险时,注册会计师可能实施的审计程序有()。
公安治安行政处置中的许可的形式包括()。
论我国汇率制度的选择与实现。(厦门大学)
在建立表间一对多的永久联系时,主表的索引类型必须是
数据库设计的根本目标是要解决
A、Justlistthenameoftheirschools.B、Listthegradesoftheirqualifications.C、Keepthelistshortandbrief.D、Includeeve
最新回复
(
0
)