首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 (1) 有解,证明:方程组 (2) 无解。
已知方程组 (1) 有解,证明:方程组 (2) 无解。
admin
2019-01-19
47
问题
已知方程组
(1)
有解,证明:方程组
(2)
无解。
选项
答案
用A
1
,[*]和A
2
,[*]分别表示方程组(1)与(2)的系数矩阵和增广矩阵,则[*]=A
2
T
。已知方程组(1)有解,故r(A
1
)=r([*])。 又由于(b
1
,b
2
,…,b
m
,1)不能由(a
11
,a
21
,…,a
m1
,0),(a
12
,a
22
,…,a
m2
,0),…,(a
1n
,a
2n
,…,a
mn
, 0)线性表示,所以 [*] 故r(A
1
T
)≠r([*]),再由r(A
1
T
)=r(A
1
)=r([*])=r(A
2
T
)=r(A
2
),可得r(A
2
)≠r([*]),所以方程组(2)无解。
解析
转载请注明原文地址:https://kaotiyun.com/show/BmP4777K
0
考研数学三
相关试题推荐
设总体X的数学期望E(X)=μ,方差D(X)=σ2,X1,X2,…,Xn为取自总体X的简单随机样本,的相关系数,i≠j,i,j=1,2,…,n.
设X1,X2,…,Xn是来自均值为θ的指数分布总体的样本,其中θ为未知,则下列估计量不是θ的无偏估计的为().
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(I)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(I)与(Ⅱ)的公共解.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(一1,一1,1,a)T,α3=(2,a,一3,一5)T,α4=(1,一1,a,5)T与齐次方程组Ax=0的基础解系等价,求Ax=0的
设两个线性方程组(I),(Ⅱ)为证明:方程组(I)有解的充分必要条件是方程组(Ⅱ)无解.
设函数f(x)、g(x)均可微,且满足条件u(x,y)=f(2x+5y)+g(2x一5y),u(x,0)=sin2x,u’y(x,0)=0.求f(x)、g(x)、u(x,y)的表达式.
已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为标准形f=3y12—6y22—6y32,其中矩阵Q的第1列是α1=()T.求二次型f(x1,x2,x3)的表达式.
设A为三阶实对称矩阵,且存在可逆矩阵P=.(1)求a,b的值;(2)求正交变换x=Qy,化二次型f(x1,x2,x3)=XTA*x为标准形,其中A*为A的伴随矩阵;(3)若kE+A*合同于单位矩阵,求k的取值范围.
随机试题
患者,男,45岁,胃部隐隐作痛,遇寒、饥饿、饮食生冷则疼痛加重,按之则舒,进食可使疼痛缓解。经治未愈,胃痛加重,并见呕吐、肢冷。可选用何方治疗
某老年呼吸衰竭患者,近日因咳嗽、咳痰、气急明显,又出现神志不清、发绀、多汗及皮肤湿润温暖,查血气分析:pH7.3,PaO245mmHg,PaCO280mmHg,应给予( )。
牙周基础治疗包括下列内容,除外()
微分方程y"一3y+2y=xex的待定特解的形式是()。
该企业业务(1)和业务(2)应调增的应纳税所得额()万元。
责任转账是指由承担损失的责任中心对实际发生或发现损失的责任中心进行损失赔偿的账务处理过程。()
(2004年考试真题)企业因销售商品发生的应收账款,其入账价值应当包括()。
以下关于软件测试的叙述中,不正确的是(51)。
将考生文件夹下的BRUST文件夹移动到考生文件夹下TURN文件夹中,并改名为FENG。
ReadthetextwhichisaboutthefiveboroughsofNewYorkCity.ForQuestions61to65,matchthenameofeachboroughtooneo
最新回复
(
0
)