首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,一1,a,5)T,α3=(2,a,一3,一5)T,α4=(一1,一1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,一1,a,5)T,α3=(2,a,一3,一5)T,α4=(一1,一1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
admin
2017-07-26
35
问题
已知A是3×4矩阵,r(A)=1,若α
1
=(1,2,0,2)
T
,α
2
=(1,一1,a,5)
T
,α
3
=(2,a,一3,一5)
T
,α
4
=(一1,一1,1,a)
T
线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
选项
答案
因为A是3×4矩阵,且r(A)=1,所以齐次方程组Ax=0的基础解系有n一r(A)=3个解向量.又因α
1
,α
2
,α
3
,α
4
线性相关,且可以表示Ax=0的任一解,故向量组α
1
,α
2
,α
3
,α
4
的秩必为3,且其极大线性无关组就是Ax=0的基础解系.由于 [*] 当且仅当a=一3,4或1时,r(α
1
,α
2
,α
3
,α
4
)=3,且不论其中哪种情况,α
1
,α
2
,α
3
必线性无关. 所以α
1
,α
2
,α
3
是Ax=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/UyH4777K
0
考研数学三
相关试题推荐
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
设随机变量(X,Y)的联合概率密度为讨论随机变量X与Y的相关性和独立性.
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T,若α1,α2,α3线性相关,求α的值;
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
证明下列命题:设f(x)在[0,1]连续,在(0,1)二阶可导且f(0)=f(1)=0,f’’(x)0(x∈(0,1)).
微分方程2x2y’=(x+y)2满足定解条件y(1)=1的特解是__________.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量a是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是().
随机试题
求函数y=2x/lnx的单调区间与极值.
用DDD作为标准的剂量单位时必须保证的“四特”不包括
患者,男,56岁。因高血压行输液治疗,输液过程中体温升高达38.6℃,伴有寒战,首先考虑
在一定置信水平上,在一定时间内,为弥补银行非预期损失所需的资本是()。
ChrisNiedenthal,aWarsaw-basedphotographer,hastakentoslatheringhischeesewithbutter.Whenhe’sthirsty,sometimesheg
数据库管理系统通常提供授权功能来控制不同用户访问数据的权限。这主要是为实现数据库的()。
ComparingtheTOEFL,IELTS,andTOEICTestsThreepopularstandardizedtestsofEnglisha)TOEIC-tests【T1】______ini
A、Gosailing.B、Seethelakebybus.C、Goswimming.D、Feedtheducks.A短文最后提供了一些建议,包括散步、钓鱼、帆船运动、冲浪等等。A是其中一项,故正确。举例处常考,考生要特别留意,凡听
A、Overamillionabandonedcarsaretowedfromthestreetseachyear.B、Onethirdofthenation’scarsareabandonedinthestre
WilliamHenryGatesisAmericanbusinessexecutive,whoservesaschairmanandchiefsoftwarearchitectofMicrosoftCorporation
最新回复
(
0
)