首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y(x)是初值问题的解,则∫0+∞xy’(x)dx=( )
设y(x)是初值问题的解,则∫0+∞xy’(x)dx=( )
admin
2018-03-30
44
问题
设y(x)是初值问题
的解,则∫
0
+∞
xy’(x)dx=( )
选项
A、一1一b+2a.
B、一1+b一2a.
C、一1一b一2a.
D、一1+b+2a.
答案
C
解析
y"+2y’+y=e
-x
的通解为
y=(C
1
+C
2
x+Ax
2
)e
-x
,
其中C
1
,C
2
为任意常数,A为某常数,而线性方程的通解为一切解.由此
y’=[(C
2
一C
1
)+(2A—C
2
)x一Ax
2
]e
-x
,
可见,无论C
1
,C
2
,A是什么常数,∫
0
+∞
xy’(x)dx均收敛.于是由分部积分法和原给的式子y=e
-x
一y"一2y’,可得
∫
0
+∞
xy’(x)dx=∫
0
+∞
xdy(x)=xy(x)|
0
+∞
一∫
0
+∞
y(x)dx
=0—0一∫
0
+∞
[e
-x
一y"(x)一2y’(x)]dx
=[e
-x
+y’(x)+2y(x)]|∫
0
+∞
=(0+0+0)一[1+y’(0)+2y(0)]
=一1一b一2a.
转载请注明原文地址:https://kaotiyun.com/show/BuX4777K
0
考研数学三
相关试题推荐
设矩阵矩阵A满足关系式A(E一C-1B)TCT=E,化简此关系式并求矩阵A.
设B是元素全都为1的,n阶方阵(n>1).证明:
设4阶矩阵A=[α1β1β2β3],B=[a2β1β2β3],其中α1,α2,β1,β2,β3均为4维列向量,且已知行列式∣A∣=4,∣B∣=1,则行列式∣A+B∣=_______.
设某厂家打算生产一批商品投放市场,已知该商品的需求函数为.且最大需求量为6,其中x表示需求量,P表示价格.求使收益最大时的产量、最大收益和相应的价格;
设矩阵矩阵X满足关系式AX+E=A2+X,求矩阵X.
计算二重积分其中D是由曲线y=4x2和y=9x2在第一象限所围成的区域.
设f(x)为[一a,a]上的连续的偶函数且f(x)>0,令F(x)=|x—f|f(t)dt.(Ⅰ)证明:F’(x)单调增加.(Ⅱ)当x取何值时,F(x)取最小值?(Ⅲ)当F(x6)的最小值为f(a)一a2一1时,求函数f(x).
设有方程yˊ+P(x)y=x2,其中P(x)=,试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
设P(x)在区间[0,+∞)上连续且为负值.y=y(x)在[0,+∞)上连续,在(0,+∞)内满足y’+P(x)y>0且y(0)≥0,求证:y(x)在[0,+∞)单调增加.
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax-1).
随机试题
Formorethanthirtyyearsthestatue______millionsofforeignpeoplearrivingbyshiptoliveintheUnitedStates.
慢性粒细胞性白血病的实验室检查特点是
以下研究方法中不属于描述性研究的是
生姜和半夏配伍,生姜可以减低半夏的毒性,生姜对半夏而言是
固定式日用电器的电源线,应装设()。
下列是地下室、半地下室等入口的建筑面积,应按()。
记日工和总承包服务费由承包人根据()提出的要求,按估算的费用确定。
年仅10周岁的妞妞背着父母用压岁钱买了一部手机。下列说法正确的有()。
Inlittlereligioussects,accordingly,themoralsofthecommonpeoplehavebeenalmostalwaysremarkablyregularandorderly;
TheestablishmentofEarthDaybeganwithanideaproposedinOctober1969byJohnMcConnell,aSanFranciscoresident.McConnel
最新回复
(
0
)