首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使f(2)-f(0)=2f’(ξ)成立的ξ.
设验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使f(2)-f(0)=2f’(ξ)成立的ξ.
admin
2019-09-04
92
问题
设
验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使f(2)-f(0)=2f’(ξ)成立的ξ.
选项
答案
由f(1-0)=f(1)=f(1+0)=1得f(x)在x=1处连续,从而f(x)在[0,2]上连续. 由f’
-
(1)=[*]=-1. f’
+
(1)=[*]=-1 得f(x)在x=1处可导且f’(1)=-1,从而f(x)在(0,2)内可导, 故f(x)在[0,2]上满足拉格朗日中值定理的条件. f(2)-f(0)=[*]=-1. 当x∈(0,1)时,f’(x)=-x;当x>1时,f’(x)=[*] 即 [*] 当0<ξ≤1时,由f(2)-f(0)=2f’(ξ)得-1=-2ξ,解得ξ=[*] 当1<ξ<2时,由f(2)-f(0)=2f’(ξ)得-1=[*],解得ξ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/BzD4777K
0
考研数学三
相关试题推荐
λ为何值时,方程组无解,有唯一解,有无穷多解?并在有无穷多解时写出方程组的通解.
设A是3阶矩阵,ξ1,ξ2,ξ3是三个线性无关的3维列向量,满足Aξi=ξi,i=1,2,3,则A=________.
一商店经销某种商品,每周进货量X与顾客对该种商品的需求量Y是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润500元,试计算此商店经销该
设X1,X2,…,X8和Y1,Y2,…,Y10是分别来自正态总体N(-1,4)和N(2,5)的简单随机样本,且相互独立,S12,S22分别为这两个样本的方差,则服从F(7,9)分布的统计量是()
微分方程的通解________(一定/不一定)包含了所有的解.
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
G={(x,y)|x2+y2≤r2}是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在区域G上的均匀分布.试确定随机变量X和Y的独立性和相关性.
设线性方程组则λ为何值时,方程组有解,有解时,求出所有的解.
微分方程y"+2y’+y=shx的一个特解应具有形式(其中a,b为常数)()
设T=cosnθ,θ=arccosx,求
随机试题
素质教育的时代特征是()。
为揭示各种疾病在某人群死亡中死因顺位,应该用
给水管网中管材的选择,取决于承受的()和材料供应等条件确定。
关于CFA证书,下列说法中,正确的有()。
根据《仲裁法》的规定,下列情形中的仲裁协议属于无效的有()。
物业管理安全防范主要包括()等方面。
王园获得的奖金比梁振杰的高。得知魏国庆的奖金比苗晓琴的高后,可知王园的奖金也比苗晓琴的高。以下各项假设均能使上述推断成立,除了()。
这所大学的学生学习了很多课程,小马是这所大学的一名学生,所以她学习了很多的课程。以下哪项论证展示的推理错误与上述论证中的最相似?
IntheefforttofireaCivilServiceemployee,hisorhermanagermayhavetospendup______$100,000oftaxmoneytodoso.
设,其中x>a>0.证明eaf(x)<1.
最新回复
(
0
)