首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使f(2)-f(0)=2f’(ξ)成立的ξ.
设验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使f(2)-f(0)=2f’(ξ)成立的ξ.
admin
2019-09-04
39
问题
设
验证f(x)在[0,2]上满足拉格朗日中值定理的条件,并求(0,2)内使f(2)-f(0)=2f’(ξ)成立的ξ.
选项
答案
由f(1-0)=f(1)=f(1+0)=1得f(x)在x=1处连续,从而f(x)在[0,2]上连续. 由f’
-
(1)=[*]=-1. f’
+
(1)=[*]=-1 得f(x)在x=1处可导且f’(1)=-1,从而f(x)在(0,2)内可导, 故f(x)在[0,2]上满足拉格朗日中值定理的条件. f(2)-f(0)=[*]=-1. 当x∈(0,1)时,f’(x)=-x;当x>1时,f’(x)=[*] 即 [*] 当0<ξ≤1时,由f(2)-f(0)=2f’(ξ)得-1=-2ξ,解得ξ=[*] 当1<ξ<2时,由f(2)-f(0)=2f’(ξ)得-1=[*],解得ξ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/BzD4777K
0
考研数学三
相关试题推荐
下列反常积分收敛的是()
A、 B、 C、 D、 D由分部积分,
设y=y(x)是区间(一π,π)内过点的光滑曲线(y(x)的一阶导数连续).当一π<x<0时,曲线上任一点处的法线都过原点;当0≤x<π时,y(x)满足y"+y+x=0.求y(x)的表达式.
已知矩形的周长为2p,将它绕其中一边旋转一周构成一旋转体(圆柱体),求该圆柱体的半径与高各为多少时,该圆柱体体积最大?
设函数f(u)在(0,+∞)内具有二阶导数,且(1)验证(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设,B是3阶非零矩阵,且AB=O,则Ax=0的通解是_______.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界.证明:f’(x)在(一∞,+∞)内有界.
设函数f(x)在[0,1]上连续,在(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
随机试题
在突触前抑制中,引起突触前末梢Ca2+内流减少的原因有
内脏性腹痛的特点是
刘女士34岁。阴道分泌物增多伴轻度外阴瘙痒2周。妇科检查见分泌物呈灰白色,均匀一致,并粘附于阴道壁,阴道黏膜无充血。关于该病人的治疗,不正确的是
下列关于劳动合同效力的说法中,正确的是()。
背景资料:某全现浇塔楼住宅工程,地下2层、地上28层,建筑面积17656m2。该工程项目周围为已建工程,因施工场地狭小,现场道路按3m考虑并兼作消防车道,路基夯实,上铺150mm厚砂石,并做混凝土面层。搅拌机棚、砂石料只能在与已建工程之间的间隙堆放。现场
以依法可以转让的股票出质的,出质人与质权人应当订立书面合同,并向证券登记机构办理出质登记,质押合同自( )生效。
某城市一座容纳人数为2800人的剧院,需要设置的疏散门数量为()
艺术鉴赏作为一种审美再创造活动。主要体现在哪些方面?
Whatcountryhasmorehighest-ratingcompaniesintheworldthananyothercountryhas?Whichofthefollowingstatefnentsabou
"Doyoumindmytakingthisseat?""______".
最新回复
(
0
)