首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1=1,当n≥1时证明:数列{an}收敛,并求其极限值.
设a1=1,当n≥1时证明:数列{an}收敛,并求其极限值.
admin
2015-08-14
67
问题
设a
1
=1,当n≥1时
证明:数列{a
n
}收敛,并求其极限值.
选项
答案
[*].f(x)在[0,+∞)上单增. 由a
1
=1>0,可得[*] 故a
1
>a
2
>0,又由于函数f(x)在[0,+∞)上单调增加,所以有f(a
1
)>f(a
2
)>f(0)=0.再根据递归定义式a
n+1
=f(a
n
),可得a
2
>a
3
>0.类似地可以继续得到:a
1
>a
2
>a
3
>a
4
>…>a
n
>a
n+1
>…>0,于是可知数列{a
n
}单调减少且有下界0,所以数列{a
n
}收敛.设其极限为A(A≥0),即[*]=A,则必有[*]=A. 在a
n+1
=f(a
n
)两边同取n→∞时的极限,根据函数f(x)的连续性,有A=f(A),即A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/C034777K
0
考研数学二
相关试题推荐
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在,n维非零列向量α,β,使得A=αβT.
设A为n阶矩阵,证明:r(A*)=
设α是n维单位列向量,A=E-αT.证明:r(A)<n.
设A为n阶矩阵.若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,……,Ak-1α线性无关.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.
随机试题
(2010年真题)下列请求权中,不适用诉讼时效的有
过敏性紫癜的实验室检查对确诊比较有价值的是
会计期末的自动转账的目的在于()。
关于智力与创造性的关系,表达正确的是()。
______什么工作都不轻松怡然,它具有追求一生都难以穷尽的深邃,______,我们只要有充分的精神准备,就能愉快地工作。自己的工作有意义,就会感到目标愈加明确,并具有了自主性。填入划横线部分最恰当的一项是()。
酒圣:杜康
若有N个元素已构成一个小根堆,那么如果增加一个元素为Kn+1,请用文字简要说明如何在log2n的时间内将其重新调整为一个堆。
用于打开查询的宏命令是()。
WhatisthesymbolofCanada?
Thepurposeofthepassageistoprovidedifferentwaysforpeopletotacklethestateofextremepressureorstrain.Supporta
最新回复
(
0
)