首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。 将β1,β2,β3由α1,α2,α3线性表示。
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。 将β1,β2,β3由α1,α2,α3线性表示。
admin
2019-03-23
32
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示。
将β
1
,β
2
,β
3
由α
1
,α
2
,α
3
线性表示。
选项
答案
令A=(α
1
,α
2
,α
3
[*]β
1
,β
2
,β
3
)。对A作初等行变换 [*] 则 β
1
=2α
1
+4α
2
—α
3
,β
2
=α
1
+2α
2
,β
3
=5α
1
+10α
2
—2α
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/CHV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βi都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设A是n阶实反对称矩阵,证明E+A可逆.
A=,r(A)=2,则()是A*X=0的基础解系.
证明3阶矩阵
证明:r(A)=r(ATA).
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值.
假设A是n阶方阵,其秩r<n.那么在A的n个行向量中
随机试题
中国特色社会主义政治发展道路,是近代以来中国人民长期奋斗的历史逻辑、理论逻辑、实践逻辑的必然结果,是坚持党的本质属性、践行党的根本宗旨的必然要求。走中国特色社会主义政治发展道路,必须坚持的中国特色社会主义政治制度有()。
构成标高分析活动的基本阶段是标高和()
A.水解B.氧化C.异构化D.聚合E.脱羧聚乙烯聚合度由2000反应生成聚合度为4000
(2009年)关于行政复议第三人,下列哪一选项是错误的?
由曲面及z=x2+y2所围成的立体体积的三次积分为()。
大批量采购水泥的供货合同,在交货检验的条款内应当约定( )等内容。
根据《企业破产法》的规定,债务人在出现破产事由时,可以向人民法院提出( )申请。
企业处于繁荣期,可以采取扩充厂房设备和提高产品价格的理财策略。()
()是社会主义民主政治的本质和核心。
Describetheproceduresofbanker’sacceptanceaccordingtothenumbersgiveninthefollowingcharter.
最新回复
(
0
)