首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)可微,f(1,2)=2,f’x(1,2)=3,f’y(1,2)=4,φ(x)=f[x,f(x,2x)],则φ’(1)=______.
设f(x,y)可微,f(1,2)=2,f’x(1,2)=3,f’y(1,2)=4,φ(x)=f[x,f(x,2x)],则φ’(1)=______.
admin
2018-05-25
103
问题
设f(x,y)可微,f(1,2)=2,f’
x
(1,2)=3,f’
y
(1,2)=4,φ(x)=f[x,f(x,2x)],则φ’(1)=______.
选项
答案
47
解析
因为φ’(x)=f’
x
[x,f(x,2x)]+f’
y
[x,f(x,2x)]×[f’
x
(x,2x)+2f’
y
(x,2x)],
所以φ’(1)=f’
y
[1,f(1,2)]+f’
y
[1,f(1,2)]×[f’
x
(1,2)+2f’
y
(1,2)] =3+4×(3+8)=47.
转载请注明原文地址:https://kaotiyun.com/show/CIW4777K
0
考研数学三
相关试题推荐
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由.(2)α4能否由α1,α2,α3线性表出,说明理
已知非齐次线性方程组A3×4=b①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是_________.
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设矩阵A=,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
已知A,B是三阶方阵,A≠O,AB=O.证明:B不可逆.
设从均值为μ,方差σ2>0的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为证明:对于任何满足条件a+b=1的常数a,b,T=是μ的元偏估计量,并确定常数a,b,使得方差DT达到最小.
设X在[0,2π]上服从均匀分布,求Y=cosX的密度函数.
设f(x)在[a,b]上二阶可导且f"(x)>0,证明:f(x)在(a,b)内为凹函数,
设f(x,y)在点(0,0)的某邻域内连续,且满足=一3,则函数f(x,y)在点(0,0)处().
随机试题
甲向乙借款30万元,借期为3年。丙为该借款提供保证担保,担保条款约定,丙在甲不能履行债务时承担保证责任,但未约定保证期间。甲同时以自己的房屋提供抵押担保并办理了登记。抵押期间,丁向甲表示愿意以75万元购买甲的房屋。在抵押期间,乙放弃对甲的抵押权,但遭到丙的
良性肿瘤的最显著特点是
女性,34岁,门诊诊断为肛裂,查体发现肛门外“前哨痔”,肛乳头肥大水肿,之前未行任何治疗,则其治疗方法不包括
慢性支气管炎急性发作期治疗,下列各项中不恰当的是
关于照片对比度的叙述,错误的是
一般木门窗刷调和漆工序中,在完成涂侧清油打底后,应当进行的下一工序为()。
下列叙述正确的是()。
________是学生在教师指导下运用知识去完成一定的操作,并形成技能技巧的方法。
艺术离不开阐释,尤其是在批评性艺术这一_______,艺术就是为了批评的,所以它更是阐释的艺术,同时,这种阐释伴随着公民政治的_______。对一个当代艺术家来说,他对自己的作品既不能“不阐释”,也不能“过度阐释”,同时还要“有效阐释”,所以当代艺术家在阐
(1)Scienceiscommittedtotheuniversal.Asignofthisisthatthemoresuccessfulasciencebecomes,thebroadertheagreemen
最新回复
(
0
)