首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y1=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。 若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103kg/m3
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y1=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。 若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103kg/m3
admin
2019-08-01
56
问题
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x
2
+y
1
=2y(y≥1/2)与x
2
+y
2
=1(y≤1/2)连接而成。
若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s
2
,水的密度为10
3
kg/m
3
)
选项
答案
容器内侧曲线可表示为 [*] 在y轴上任意取一个微元[y,y+dy],对应容器的小薄片的水的重量为ρgπf
2
(y)dy(ρ为水的密度),它升高的距离为d(y)=2-y。将此薄片抽出所作的功为 dW=ρgπf
2
(y)(2-y)dy, 因此将容器中的水全部抽出所作的功为 W=∫
-1
2
ρgπf
2
(y)(2-y)dy=ρgπ[∫
-1
1/2
(1-y
2
)(2-y)dy+∫
1/2
2
(2y-y
2
)(2-y)dy], 其中 ∫
1/2
2
(2y-y
2
)(2-y)dy=∫
1/2
2
[1-(1-y)
2
][1+(1-y)]dy [*]∫
-1
1/2
(1-t
2
)(1+t)dt=∫
-1
1/2
(1-y
2
)(1+y)dy。 再代入上式可得 W=ρgπ[∫
-1
1/2
(1-y
2
)(2-y)dy+∫
-1
1/2
(1-y
2
)(1+y)dy] =ρgπ∫
-1
1/2
3(1-y
2
)dy=ρgπ.3([*]y
3
|
-1
1/2
) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/CJN4777K
0
考研数学二
相关试题推荐
[*]令[*]=t,则x=ln(2+t2),dx=[*]dt,[*]所以[*]
已知齐次方程组同解,求a,b,c.
设f(x)在(-∞,+∞)连续,存在极限证明:(Ⅰ)设A<B,则对∈(A,B),∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)有界.
(Ⅰ)设ex+y=y确定y=y(x),求y’,y’’;(Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
讨论函数在x=0处的连续性与可导性.
设A为实矩阵,证明ATA的特征值都是非负实数.
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u5-5xy+5u=1确定.求
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
设f(x)=(Ⅰ)证明f(x)是以π为周期的周期函数.(Ⅱ)求f(x)的值域.
[2006年]设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt是().
随机试题
驾驶机动车在这种道路上怎样行驶最安全?
壁胸膜分为哪几部分?各覆盖在何处?
猩红热的主要病机是
当事人向人民法院申请撤销国内仲裁裁决,以下说法正确的是:()
测定反滤料的干密度可采用()。[2010年真题]
请根据所提供的单据,完成相关的判断题。东莞三星视界有限公司与韩国一家公司签订一份购货合同,合同规定中方从韩方购买一批电池芯,用于生产加工电子钟,货物于2006年6月15日到达深圳口岸。东莞该公司报检员持合同、发票、提单向深圳检验检疫机构报检。
下列货物销售,适用13%税率的有( )。
按照“先进先出”组织数据的数据结构是( )。
Menaremorelikelythanwomentofakeexpertisetheydon’thave—andrichmenaretheworstculpritswhenit【C1】________tospeak
Thereisapopularbeliefamongparentsthatschoolsarenolongerinterestedinspelling.Thisis,however,a【C1】______.Nosch
最新回复
(
0
)