首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.97试用切比雪夫不等式和中心极限定理来分别求解.(Ф(1.645)=0.95)
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.97试用切比雪夫不等式和中心极限定理来分别求解.(Ф(1.645)=0.95)
admin
2018-07-30
40
问题
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.97试用切比雪夫不等式和中心极限定理来分别求解.(Ф(1.645)=0.95)
选项
答案
设抛掷n次硬币,正面出现X次,则X~B(n,0.5).现要求P(0.4<[*]<0.6)≥0.9,即P(0.4n<X<0.6n)≥0.9. (1)用切比雪夫不等式: P(0.4n<X<0.6n)=P(|X-0.5n|<0.1n)≥1-[*], 令1-[*]≥0.9,得n≥250; (2)用中心极限定理: P(0.4n<X<0.6n)=[*] ≈Ф(0.2[*])-Ф(-0.2[*])=2Ф(0.2[*])-1, 令2Ф(0.2[*])-1≥0.9,得Ф(0.2[*])≥0.95, ∴0.2[*]≥1.645,∴n≥67.65即n≥68.
解析
转载请注明原文地址:https://kaotiyun.com/show/CJW4777K
0
考研数学三
相关试题推荐
向量组α1=(1,0,1,2)T,α2=(1,1,3,1)T,α3=(2,-1,a+1,5)T线性相关,则a=_______.
设二维随机变量(X,Y)在区域D={(x,y)|0≤y≤1,y≤x≤y+1}内服从均匀分布,求边缘密度函数,并判断X,Y的独立性.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记(Ⅰ)求U和V的联合分布;(Ⅱ求U和V的相关系数ρ.
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X-Y|的概率密度fV(v).
设随机变量X与Y相互独立同分布,且都服从p=的0.1分布,则随机变量Z=max{X,Y}的分布律为__________.
求下列方程满足给定条件的特解:(Ⅰ)yt+1-yt=2t,y0=3;(Ⅱ)yt+1+4yt=y0=1.
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24-0.2P1,Q2=10-0.05P2;总成本函数C=35+40(Q1+Q2).试问:厂家如何确定两个市场的售价,才能使其获得的总
设总体X服从韦布尔分布,密度函数为其中α>0为已知,θ>0是未知参数,试根据来自X的简单随机样本X1,X2,…,Xn,求θ的最大似然估计量.
已知总体X的概率密度f(x)=(λ>0),X1,…,Xn为来自总体X的简单随机样本,Y=X2.(Ⅰ)求Y的期望EY(记EY为b);(Ⅱ)求λ的矩估计量(Ⅲ)利用上述结果求b的最大似然估计量.
随机试题
男女双方基于一定的客观现实基础和共同的生活理想,在各自内心形成的最真挚的彼此倾慕、互相爱悦,并渴望对方成为自己的终身伴侣的最强烈持久、纯洁专一的感情是
Windows的设备管理程序支持即插即用(PnP)功能。
轻度慢性肝炎的特征性病变足
下列论述中,()不符合本质安全化原则的论点。
企业采用权责发生制作为核算基础,下列各项中,不属于本期收入或费用的是()。
在中国境外设立的中国企业,在向国内报送财务报表时应当()。
下列属于《中小学教师职业道德规范》内容的是()
维生素对维持人体机能非常重要,某保健品公司以此为卖点宣传其生产的营养品。该公司称其产品每份的维生素含量是人体日常需求的1.5倍,可以充分满足人体对各种维生素的需求。然而,_____因此,该公司进行了虚假的宣传。以下哪个选项放到上文划线处最合适?
Intheprecedingfigure,eachofthefoursquareshassidesoflength2x.IftrianglePQRisformedbyjoiningthecentersofth
Thereasonsomechildrenarebackwardinspeakingtodayisthat______.Accordingtothepassage,whichofthefollowingisTRU
最新回复
(
0
)