首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2018-06-15
72
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令g(x)=x+lnx-1 [*] 令f’(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,ヨx
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/CPg4777K
0
考研数学一
相关试题推荐
计算(a>0是常数).
对充分大的一切x,以下5个函数:,最大的是_______
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为,以X表示该汽车首次遇到红灯前已通过的路口的个数,求X的概率分布.
设用变限积分表示满足上述初值问题的特解y(x);
设f(x)是以T为周期的连续函数.(1)证明:f(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的(3)以[x]表示不超过x的最大整数,g(x)=x-[x],求
计算三重积分
将函数展开成x的幂级数,并指出其收敛区间.
设有一半径为R,长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
随机试题
本体感觉来自
魏女士,26岁,妊娠39周,重度贫血,因自觉胎动减少4小时就诊,初步诊断“胎儿窘迫”,错误的处理是()
甲房地产开发公司(以下简称甲公司)在A省B市城市规划区内,利用C乡的300亩基本农田以外的耕地欲开发建设住宅小区。C乡原人均耕地面积2亩,被征地前三年平均年产值为1000元/亩。2004年3月1日,甲公司签订了土地使用权出让合同,交纳土地使用权出让金900
FIDIC施工合同条件》规定的“不可预见物质条件”范围包括()。
甲电子设备公司为居民企业,主要从事电子设备的制造业务。2017年有关经营情况如下:(1)销售货物收入2000万元,提供技术服务收入500万元,转让股权收入3000万元。经税务机关核准上年已作坏账损失处理后又收回的其它应收款15万元。(2)缴纳增值税18
价值观
幼儿园社会教育的指导要点有哪些?
操作技能形成的高级阶段是()。
Howmuchdoesthemanknowabouttheoldman?
A、Theyusuallycompeteandfightwitheachother.B、Theysometimeslaughatthelosers.C、Theyknowtheruleswellandalwaysob
最新回复
(
0
)