首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4为3维非零列向量,则下列结论中: ①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关; ②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关; ③如果r(
已知α1,α2,α3,α4为3维非零列向量,则下列结论中: ①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关; ②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关; ③如果r(
admin
2018-08-22
72
问题
已知α
1
,α
2
,α
3
,α
4
为3维非零列向量,则下列结论中:
①如果α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关;
②如果α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,则α
1
,α
2
,α
4
也线性相关;
③如果r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
),则α
4
可以由α
1
,α
2
,α
3
线性表出.
正确的个数为 ( )
选项
A、0
B、l
C、2
D、3
答案
C
解析
如果α
1
,α
2
,α
3
线性无关,由于α
1
,α
2
,α
3
,α
4
为4个3维向量,故α
1
,α
2
,α
3
,α
4
线性相关,则α
4
必能由α
1
,α
2
,α
3
线性表出,可知①是正确的.
令
则α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,但α
1
,α
2
,α
4
线性无关.可知②是错误的.
由向量组等价
[α
1
,α
1
+α
2
,α
2
+α
3
]→[α
1
,α
2
,α
2
+α
3
]→[α
1
,α
2
,α
3
],
[α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
]→[α
4
,α
1
,α
2
,α
3
]→[α
1
,α
2
,α
3
,α
4
],
可知
r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
1
,α
2
,α
3
),
r(α
4
,α
1
+α
4
,α
2
+a4,α
3
+α
4
)=r(α
1
,α
2
,α
3
,α
4
),
故当r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
1
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)时,也有
r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,α
4
),
因此α
4
可以由α
1
,α
2
,α
3
线性表出.可知③是正确的.故选(C).
转载请注明原文地址:https://kaotiyun.com/show/CWj4777K
0
考研数学二
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设a>b>c>0,证明
求函数的间断点,并指出其类型.
判断函数的单调性.
设区域D由曲线=()
(2010年)设m,n均是正整数,则反常积分的收敛性【】
(2008年)设f(χ)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线χ=0,χ=t,曲线y=f(χ)以及χ轴所围成的曲边梯形绕z轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f
设则()
设则()
设求y(n)(n>1).
随机试题
某地8月中旬有一群绵羊相继发病,体温升高达42℃左右,精神沉郁,食欲废绝。鼻镜、口腔黏膜发热,齿龈、舌及唇边缘出现烂斑,颜色呈青紫色;鼻孔内积脓性黏稠鼻液,干固后结痂覆盖其表面。有的下痢、有的跛行,蹄冠及趾间皮肤充血、发红。有的怀孕母羊发生流产。该病的
患者,男,18岁。因高热,胸痛,咳铁锈色痰入院,检查:急性热病病容,体温40℃,脉搏102次/分,X线胸片示左上肺大片片状阴影,白细胞19×109/L。治疗应首选
(2007)题图显示的是1972年7月15日一组现代主义建筑被炸毁拆除。这个事件被后现代建筑理论家詹克斯宣布为现代主义建筑的“死亡”。这组被炸毁的建筑是()。
中国公民王某就职于中国境内甲公司,2015年1月从境内取得如下收入:(1)从甲公司取得工资收入3800元,半年奖4600元,取得规定标准的岗位津贴300元,差旅费津贴900元。(2)担任乙公司的独立董事,从乙公司取得董事费10000元。(3)长期担任
保险是()、消化损失的一种经济制度。
对教师专业发展的要求,说法不正确的是()。
A、 B、 C、 D、 A
日本最早的和歌集是()。
以下不属于计算机网络的主要功能的是()。
•Youwillhearateachertalkingaboutacampingtrip.•Foreachquestion,fillinthemissinginformationinthenumberedspa
最新回复
(
0
)