首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,已知A有3个线性无关的特征向量,λ=2是A的2重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
设矩阵A=,已知A有3个线性无关的特征向量,λ=2是A的2重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
admin
2018-07-27
80
问题
设矩阵A=
,已知A有3个线性无关的特征向量,λ=2是A的2重特征值.试求可逆矩阵P,使得P
-1
AP为对角形矩阵.
选项
答案
由于λ=2是A的2重特征值,故3-r(2E-A)=2,或r(2E-A) [*] x=2,y=-2;由2+2+λ
3
=1+4+5,得A的另一特征值为λ
3
=6.由 [*] 得属于λ
1
=λ
2
=2的线性无关特征向量ξ
1
=(1,-1,0)
T
,ξ
2
=(1,0,1)
T
.由6E-A [*] 得属于λ
3
=6的线性无关特征向量ξ
3
=(1,-2,3)
T
,故得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/CXW4777K
0
考研数学三
相关试题推荐
判断下列结论是否正确,并证明你的判断.(Ⅰ)设当n>N时xn<yn,已知极限均存在,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又存在c∈(a,b)使得极限,则f(x)在(a,b)有界;(Ⅲ)若=∞.则存在δ>0.使得当0<|x-a|<δ时有界.
在函数
设总体X~E(λ),则来自总体X的简单随机样本X1,X2,…,Xn的联合概率密度f(x1,x2,…,xn)=________.
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
假设随机事件A与B相互独立,,求a的值.
已知A=.若=8A-1B+12E,①求矩阵B.
已知X,Y是相互正交的n维列向量,证明E+XYT可逆.
已知a,b,c不全为零,证明方程组只有零解.
已知方程组有解,证明:方程组的任意一组解必是方程(Ⅲ)b1x1+b2x2+…+bmxm=0的解.
随机试题
下列不属于非语言性沟通形式的是
A.能引导方中群药直至病所的药物B.针对兼病或兼证起主要治疗作用C.针对主病或主证起主要治疗作用D.对方中群药有调和作用的药物E.直接治疗次要症状的药物
手足软弱无力、行动不灵而无痛者为
确定价值工程对象改进范围的原则由( )。
一个完整的预警体系应由()等部分构成。
非法设立期货交易场所的,由()予以取缔。
甲、乙、丙、丁四人的车分别为白色、银色、蓝色和红色。在问到他们各自车的颜色时,甲说:“乙的车不是白色的。”乙说:“丙的车是红色的。”丙说:“丁的车不是蓝色的。”丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话。”如果丁说的是
原始信仰中对死亡起因的神话解释在现代人看来或许是浅陋的,但这些观念信仰在原始生活中却是不可或缺的,它们作为一种心理支持力量和社会支持力量而存在。这段话支持了这样一种观点( )。
宋江、林冲和武松各自买了一辆汽车,分别是宝马、奥迪和陆虎。关于他们购买的品牌.吴用有如下猜测“宋江选的是陆虎,林冲不会选奥迪,武松选的肯定不是陆虎”,但是他只猜对了其中一个人的选择。由此可知:
Nowletuslookathowweread.Whenwereadaprintedtext,oureyesmovecrossapageinshort,jerkymovement.Werecognize
最新回复
(
0
)