首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,A*x=0的基础解系为( )
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,A*x=0的基础解系为( )
admin
2021-02-25
46
问题
设A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,A
*
为A的伴随矩阵,若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,A
*
x=0的基础解系为( )
选项
A、α
1
,α
3
B、α
1
,α
2
C、α
1
,α
2
,α
3
D、α
2
,α
3
,α
4
答案
D
解析
本题考查齐次线性方程组基础解系的概念.要求考生掌握:(1)未知数的个数(n)-系数矩阵的秩r(A)=基础解系解向量的个数.(2)矩阵与其伴随矩阵的秩的关系.(3)线性相关的向量组增加向量的个数所得
由(1,0,1,0)
T
是方程组Ax=0的一个基础解系,所以r(A)=3,从而r(A
*
)=1,于是A
*
x=0的基础解系解向量的个数为3,所以A、B不能选.又
所以α
1
与α
3
线性相关,于是α
1
,α
2
,α
3
线性相关.
又r(A)=3,所以|A|=0,于是A
*
A=|A|E=O,所以α
1
,α
2
,α
3
,α
4
都是A
*
x=0的解,而α
2
,α
3
,α
4
又线性无关,
因此是方程组A
*
x=0的基础解系,故选D.
转载请注明原文地址:https://kaotiyun.com/show/CY84777K
0
考研数学二
相关试题推荐
已知α1,α2都是3阶矩阵A的特征向量.特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
设u=,求du
设二次型经过正交变换X=QY化为标准形,求参数a,b及正交矩阵Q.
设f(x)和g(x)在[a,b]上连续.试证:(∫abf(x)g(x)dx)2≤∫abf2(x)dx.∫abg2(x)dx.
设f(χ)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f〞(χ)|≤b,a,b为非负数,求证:c∈(0,1),有|f′(c)|≤2a+b.
设A,B和C都是n阶矩阵,其中A,B可逆,求下列2n阶矩阵的伴随矩阵.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
设f(x)=|x|sin2x,则使导数存在的最高阶数n=()
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是
随机试题
背景某工程概算已被批准,准许招标。工程采用公开招标招标,招标文件规定:以概算额为基础按固定总价合同承包。某场道施工公司一举中标后通过艰苦谈判确定合同价650万元。该施工公司认为工程结构简单且对施工现场很熟悉未进行勘察,另外因工期短于一年市场价格不会有太大
“大漠孤烟直,黄河落日圆”描绘的是这样的景象:极目大漠,只见一缕孤烟,冲霄直上;遥望长河,一轮落日浮动河面,显得格外浑圆。请问这句诗出自哪位诗人的哪首诗?()
创伤性炎症的有关介质中,导致血管收缩和血小板聚集的是
下列哪种基团不是一碳单位
A.致密层B.海绵层C.基底层D.海绵层与基底层E.海绵层与致密层
A、甲苯咪唑B、伊维菌素C、枸橼酸哌嗪D、阿苯达唑E、噻嘧啶除对蛔虫及鞭虫的虫卵有杀灭作用,还可干扰虫体摄取葡萄糖,抑制虫体生长繁殖的是()。
按照ABC分类法进行库存控制,B类物资具有的特征是()。
(2017·陕西)我国2001年以来,实施的新一轮教育改革的核心是()(常考)
抢劫罪与抢夺罪的主要区别在于()。
斜面裂形成的原因是()。
最新回复
(
0
)