首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,A*x=0的基础解系为( )
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,A*x=0的基础解系为( )
admin
2021-02-25
68
问题
设A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,A
*
为A的伴随矩阵,若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,A
*
x=0的基础解系为( )
选项
A、α
1
,α
3
B、α
1
,α
2
C、α
1
,α
2
,α
3
D、α
2
,α
3
,α
4
答案
D
解析
本题考查齐次线性方程组基础解系的概念.要求考生掌握:(1)未知数的个数(n)-系数矩阵的秩r(A)=基础解系解向量的个数.(2)矩阵与其伴随矩阵的秩的关系.(3)线性相关的向量组增加向量的个数所得
由(1,0,1,0)
T
是方程组Ax=0的一个基础解系,所以r(A)=3,从而r(A
*
)=1,于是A
*
x=0的基础解系解向量的个数为3,所以A、B不能选.又
所以α
1
与α
3
线性相关,于是α
1
,α
2
,α
3
线性相关.
又r(A)=3,所以|A|=0,于是A
*
A=|A|E=O,所以α
1
,α
2
,α
3
,α
4
都是A
*
x=0的解,而α
2
,α
3
,α
4
又线性无关,
因此是方程组A
*
x=0的基础解系,故选D.
转载请注明原文地址:https://kaotiyun.com/show/CY84777K
0
考研数学二
相关试题推荐
[*]
设A,b都是n阶矩阵,使得A+B可逆,证明B(A+B)-1A=A(A+B)-1B.
(1)设y=f(χ,t),其中t是由G(χ,y,t)=0确定的χ,y的函数,且f(χ,t),G(χ,y,t)一阶连续可偏导,求(2)设z=z(χ,y)由方程z+lnz-=1确定,求
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
确定常数a,c,使得,其中c为非零常数.
分段函数一定不是初等函数,若正确,试证之;若不正确,试说明它们之间的关系?
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设f(x,y)在点0(0,0)的某邻域U内连续,且常数试讨论f(0,0)是否为f(x,y)的极值?若为极值,是极大值还是极小值?
已知二次型f(χ1,χ2,χ3)=χ12+4χ22+4χ32+2λχ1χ2-2χ1χ3+4χ2χ3.当λ满足什么条件时f(χ1,χ2,χ3)正定?
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
随机试题
新时代中国特色社会主义基本方略是()
瓷全冠的肩台应预备成
A.口咸B.口甜而黏腻C.口苦D.口中泛酸E.口中酸馊火盛可见
与四环素类抗生素联用降低药物疗效的中药,不包括
与其他组织结构模式相比,线性组织结构模式的特点有()。
背景资料:某电信工程公司承担了200个3G移动基站的安装工程,内容包括传输设备、电源设备、基站设备及天馈线安装。部分基站设备与原有2G设备共站安装,需进行电源割接。施工过程中,项目经理到工地去巡视检查,看到了以下现象:(1)甲
下列关于责任成本的说法中,正确的有()。
为什么要挽救濒危灭绝的物种呢?对公众来说,濒危动物与生物学上的奇异行为差不多。从更广的范围内考虑物种灭绝的问题,便得出另一个不同的观点。其要点为:很多重要的社会进步都是以生命形式为基础的,而这些形式的价值不可能预先被感知。例如,产橡胶的植物对当代生活和工业
以毛泽东为代表的中国共产党人开始探索中国自己的社会主义建设道路的标志是
下面的数组声明语句中()是正确的。
最新回复
(
0
)