首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,A*x=0的基础解系为( )
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,A*x=0的基础解系为( )
admin
2021-02-25
31
问题
设A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,A
*
为A的伴随矩阵,若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,A
*
x=0的基础解系为( )
选项
A、α
1
,α
3
B、α
1
,α
2
C、α
1
,α
2
,α
3
D、α
2
,α
3
,α
4
答案
D
解析
本题考查齐次线性方程组基础解系的概念.要求考生掌握:(1)未知数的个数(n)-系数矩阵的秩r(A)=基础解系解向量的个数.(2)矩阵与其伴随矩阵的秩的关系.(3)线性相关的向量组增加向量的个数所得
由(1,0,1,0)
T
是方程组Ax=0的一个基础解系,所以r(A)=3,从而r(A
*
)=1,于是A
*
x=0的基础解系解向量的个数为3,所以A、B不能选.又
所以α
1
与α
3
线性相关,于是α
1
,α
2
,α
3
线性相关.
又r(A)=3,所以|A|=0,于是A
*
A=|A|E=O,所以α
1
,α
2
,α
3
,α
4
都是A
*
x=0的解,而α
2
,α
3
,α
4
又线性无关,
因此是方程组A
*
x=0的基础解系,故选D.
转载请注明原文地址:https://kaotiyun.com/show/CY84777K
0
考研数学二
相关试题推荐
设四阶矩阵B满足BA-1=2AB+E,且A=,求矩阵B.
求函数f(χ)=(2-t)e-tdt的最值.
设,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
分段函数一定不是初等函数,若正确,试证之;若不正确,试说明它们之间的关系?
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
已知二次型f(χ1,χ2,χ3)=χ12+4χ22+4χ32+2λχ1χ2-2χ1χ3+4χ2χ3.当λ满足什么条件时f(χ1,χ2,χ3)正定?
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
随机试题
试述系统的特征。
Toppingtheclassacademicallywascertainlyanadvantage.StudyingwasabreezeforNigel.Therewardwascertainlyincomparabl
在胎儿期和婴儿期甲状腺素缺乏,受损害最严重的器官是
在预算定额人工工日消耗量计算时,已如完成单位合格产品的基本用工为22工日,超运距用工为4工日,辅助用工为2工日,人工幅度差系数为12%,则预算定额中的人工工日消耗量为()工日。
关于资金时间价值的说法,错误的是()。[2010年考题]
建设项目竣工验收的主要依据包括()。
现在很多企业经常让员工加班,甚至在企业内以加班文化作为企业的企业文化。如果你是劳动就业指导员,针对企业的加班行为,你准备怎么做?
求微分方程y"-3y’+2y=2xex的通解。
一个工作人员可使用多台计算机,而一台计算机被多个人使用,则实体工作人员与实体计算机之间的联系是
Thispartistotestyourabilitytodopracticalwriting.Youarerequiredtowriteacomplaintletterbasedonthefollowingi
最新回复
(
0
)