设f(x)在[0,1]上连续且单调减少,证明:当0<λ<1时,必有不等式∫0λf(x)dx≥λ∫01f(x)dx.

admin2022-06-04  0

问题 设f(x)在[0,1]上连续且单调减少,证明:当0<λ<1时,必有不等式∫0λf(x)dx≥λ∫01f(x)dx.

选项

答案因f(x)在[0,1]上连续,由积分中值定理,得 ∫0λf(x)dx-λ∫01f(x)dx=(1-λ)∫0λf(x)dx+λ∫0λf(x)dx-λ∫01f(x)dx =(1-λ)∫0λf(x)dx-λ∫λ1f(x)dx =λ(1-λ)f(ξ1)-λ(1-λ)f(ξ2)=λ(1-λ)[f(ξ1)-f(ξ2)] 其中0<ξ1<λ<ξ2<1.f(x)在[0,1]上单调减少,则f(ξ1)≥f(ξ2).又λ>0,1-λ>0,故∫0λf(x)dx-λ∫01f(x)dx=λ(1-λ)[f(ξ1)-f(ξ2)]>0.即∫0λf(x)dx≥λ∫01f(x)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/Cil4777K
0

最新回复(0)