首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数F(x,y)=xye-(x2+y2)在区域D={(x,y)︱x≥0,y≥0}上的最大值与最小值。
求二元函数F(x,y)=xye-(x2+y2)在区域D={(x,y)︱x≥0,y≥0}上的最大值与最小值。
admin
2021-12-09
42
问题
求二元函数F(x,y)=xye
-(x
2
+y
2
)
在区域D={(x,y)︱x≥0,y≥0}上的最大值与最小值。
选项
答案
区域D在平面直角坐标系Oxy上的第一象限,区域D有两条边界F
1
={(x,0)︳x≥0}与F
2
={(0,y)︳y≥0}它们分别是平面直角坐标系Oxy的x轴与y轴的正半轴,在这两条边界上F(x,y)=0,又因[*],由于当x
2
+ y
2
→+∞时,[*],从而又有[*],于是[*],在区域D内,由于[*] 仅有唯一解(x,y)= [*],这表明F(x,y)在区域D内仅有唯一驻点[*],在此点处[*]。 注意[*]比F(x,y)在D的两条边界上的函数值以及当(x,y)在区域内趋向无限远处函数F(x,y)的极限值都要大,可见[*]是F(x,y)在D上的最大值。又因在D上F(x,y)非负,所以其最小值在x轴与y轴的正半轴上取得,即F(x,y)在D上的最小值为0。
解析
转载请注明原文地址:https://kaotiyun.com/show/CsR4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,经若干次矩阵的初等变换得到矩阵B,那么().
设[0,4]区间上y=f(x)的导函数的图形如图2一1所示,则f(x)()
设则
x=一2是的
设随机变量X的密度函数为f(x),且f(x)为偶函数,X的分布函数为F(x),则对任意实数a,有().
设函数y=f(x)具有二阶导数,且f’(x)>0,f’’(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④E一A。α肯定是其特征向量的矩阵个数为()
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设A是n阶实对称矩阵,将A的第i列和第j列对换得到B,再将B的第i行和第j行对换得到C,则A与C()
设函数u(x,y)=φ(x+y)+φ(x—y)+∫x—yx+yψ(t)dt,其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
随机试题
调肝养血之名方是
下列哪种血液病与免疫因素无关
不能有效清除菌斑的机械方法是
在国家一级保护野生药材物种范围内的药材是在国家三级保护野生药材物种范围内的药材是
A.灯心草与通草B.大黄炭、黄芩炭与黄柏炭C.地骨皮、千年健与五加皮D.焦麦芽、焦山楂、焦神曲E.熟地黄、龙眼肉放在斗架的最低层的是()。
马锡五审判方式的基本特点是()。
某高校本科生A在大学一年级时就因多次旷课而受到警告处分,后又多次违反学校有关宿舍管理规定,受到记过处分。2012年6月15日,A在参加期末考试期间,被当场发现作弊行为。该高校为了严肃校纪校风,稳定校园教育教学秩序,营造积极向上的校园环境,决定给予A留校察看
市场机会就是市场上存在的未被满足的需求。有时人们称它为潜在的市场,亦即客观上已经存在或即将形成,而尚未被人们认识的市场。根据上述定义,下列属于市场机会的是:
—______thesportsmeetmightbeputoff.—Yes.Italldependsontheweather.
Everybodyactsnotonlyunderexternalcompulsion_________________________(也要遵照内心的需求).
最新回复
(
0
)