首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(08年)设n元线性方程组Aχ=b,其中 (Ⅰ)证明行列式|A|(n+1)an; (Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1; (Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(08年)设n元线性方程组Aχ=b,其中 (Ⅰ)证明行列式|A|(n+1)an; (Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1; (Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
admin
2017-05-26
89
问题
(08年)设n元线性方程组Aχ=b,其中
(Ⅰ)证明行列式|A|(n+1)a
n
;
(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ
1
;
(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
选项
答案
把|A|化成上三角行列式 [*] (Ⅱ)该方程组有唯一解[*]|A|≠0,a≠0.此时,由克莱姆法则,将D
n
第1列换成b,得行列式 [*] 所以,[*] (Ⅲ)当a=0时,方程组为 [*] 此时方程组系数矩阵的秩和增广矩阵的秩均为n-1,所以此时方程组有无穷多解,其通解为 χ=(0,1,0,…,0)
T
+k(1,0,0,…,0)
T
其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/CtH4777K
0
考研数学三
相关试题推荐
如果P(AB)=0,则下列结论中成立的是().
向量组a1,a2,…,as线性无关的充分条件是().
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=,其中A的逆矩阵为B,则a=_________.
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设矩阵A,B满足A*BA=2BA-8E,其中A=,E为单位矩阵,A*为A的伴随矩阵,则B=________.
设A为三阶矩阵,A的特征值为λ1=1,λ22,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x4+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(I)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
随机试题
某家电企业联盟,以甲、乙、丙三家企业为核心层,以这三家企业的供应商为外围层,成员企业问的协调和冲突仲裁由核心层企业组成的协调委员会负责。这种企业联盟模式属于()。
脊髓灰质炎又称_______________,病变主要在_______________,表现为________________。
A.实寒证B.实热证C.虚热证D.虚寒证E.寒热错杂证阳偏衰所表现的证候是
与照片颗粒性无关的因素是
以下有关所有权的权能的表述,理解正确的是:()
信贷资金的供求状况属于影响银行营销决策的()因素。
在考评的组织实施阶段,应关注的事项不包括()。(2007年11月三级真题)
国家赔偿是指国家机关及其工作人员因行使职权给公民、法人及其它组织的人身权或财产造成损害,依法给予的赔偿。()
随着科学技术的发展,人类已经制造出诸如醋纤维、基苯乙烯、合成橡胶等自然原本不存在的化合物,其数量已达数百万种。这一情况说明
Theoldmusiciandecidedtomovetohercountryhome______heradvancedageandpoorhealth.
最新回复
(
0
)