首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2019-05-11
61
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n-3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n-3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是AX=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=r(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
)≤3,从而 r(γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
),这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/CuV4777K
0
考研数学二
相关试题推荐
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
设f(χ)连续可导,=2,求
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
微分方程|x=1满足y=1的特解为__________。
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dtG(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设y=f(x)与y=sin2x在(0,0)处切线相同,其中f(x)可导,则
设平面图形A由x2+y2≤2x及y≥x所确定,则A绕直线x=2旋转一周所得旋转体的体积公式为().
设曲线y=y(x)位于第一象限且在原点处与x轴相切,P(x,y)为曲线上任一点,该点与原点之间的弧长为l1,点P处的切线与y轴交于点A,点A,P之间的距离为l2,又满足x(3l1+2)=2(x+1)l2,求曲线y=y(x).
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2.(1)试求D1绕x轴旋转而成的旋转体的体积V1;D2绕y轴旋转而成的旋转体的体积V2;(2)问
随机试题
最终实现肾对形成尿液的浓缩和稀释功能的主要场所
具有活血化瘀、凉血消痈、养血安神等作用的药物是
治疗肺痈宜选用的药
下列民事法律行为的形式中,()大多适用于即时结清、小额交易的行为,对于非即时结清、金额较大的重要行为,一般不宜采用。
关于砌体结构墙体构造柱的做法,错误的是()。
一个声源在A点单独发声时,在B点的声压级为58dB,4个互不相干的同样声源在A点同时发声时,在B点的声压级是()。
如果风很大,我们就会放飞风筝。如果天空不晴朗,我们就不会放飞风筝。如果天气很暖和,我们就会放飞风筝。假定上面的陈述属实,如果我们现在正在放飞风筝,则下面的哪项也必定是真的?()Ⅰ.风很大。Ⅱ.天空晴朗。Ⅲ.天气暖和。
简述环境污染责任的概念及其构成条件。
下面程序运行后,单击命令按钮,输出的结果是______。PrivateSubCommand1_Click()Dima%(1To5),i%,s#Fori=1To5a(i)=iNexts=Fun(A)Print"s=";s;E
Thetouristtradeisbooming.Withallthiscomingandgoing,you’dexpectgreaterunderstandingtodevelopbetweenthenations
最新回复
(
0
)