首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为 ξ1=. 将β用ξ1,ξ2,ξ3线性表出.
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为 ξ1=. 将β用ξ1,ξ2,ξ3线性表出.
admin
2018-08-03
32
问题
设3阶矩阵A的特征值为λ
1
=1,λ
2
=2,λ
3
=3,对应的特征向量依次为
ξ
1
=
.
将β用ξ
1
,ξ
2
,ξ
3
线性表出.
选项
答案
设β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
,即 [*] 得唯一解x
1
=2,x
2
=一2,x
3
=1,故β=2ξ
1
—ξ
2
+ξ
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Cug4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,证明:∫abf(x)dx∫abf(y)dy=[∫abf(x)dx]2.
设{un},{cn}为正项数列,证明:(1)若对一切正整数n满足cnun一cn+1un≤0,且也发散;(2)若对一切正整数n满足也收敛.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f"(ξ)<0.
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值,(2)判断A可否对角化.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
设α1,α2,…,αt为AX=0的一个基础解系,P不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设总体X的概率密度为f(x;α,β)=其中α和β是未知参数,利用总体X的如下样本值一0.5,0.3,一0.2,一0.6,一0.1,0.4,0.5,一0.8,求α的矩估计值和最大似然估计值.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xjxj.(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ)判断
随机试题
如果某债券基金的久期确定,那么,当市场利率下降时,该债券基金的资产净值将如何变化?()
下列不是患者应尽的道德义务是
(2005)在高层住宅中,设计有一户占两层的跃层住宅。如果把起居室设在上一层.把卧室设在下一层,这种布局有什么优点?
关于法的效力层级,下列表述正确的有()。
关于项目的可行性研究同贷款项目评估关系的正确说法是()。
属于地球自转产生的现象的是()。
5个学生一一H,L,P,R和S中的每一个人将在三月份恰好参观3个城市——M,T和V中的一个城市,根据以下条件:(1)S和P参观的城市互不相同;(2)H和R参观同一座城市;(3)L或者参观M或者参观T;(4)若P参观V
设A为n阶可逆矩阵,A*为其伴随矩阵,则下列结论不正确的是().
以下有4组用户标识符,其中合法的一组是______。
覆盖率
最新回复
(
0
)