首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数z=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的区域D上的最大值与最小值.
求函数z=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的区域D上的最大值与最小值.
admin
2017-07-28
83
问题
求函数z=x
2
y(4一x一y)在由直线x+y=6,x轴和y轴所围成的区域D上的最大值与最小值.
选项
答案
区域D如图8.1所示,它是有界闭区域.z(x,y)在D上连续,所以在D上一定有最大值与最小值,它或在D内的驻点达到,或在D的边界上达到. 为求D内驻点,先求 [*]=2xy(4一x一y)一x
2
y=xy(8—3x一2y), [*]=x
2
(4一x一y)一x
2
y=x
2
(4一x一2y). 再解方程组[*]’得z(x,y)在D内的唯一驻点(x,y)=(2,1)且z(2,1)=4. [*] 在D的边界y=0,0≤x≤6或x=0,0≤y≤6上z(x,y)=0; 在边界x+y=6(0≤x≤6)上将y=6一x代入得z(x,y)=x
2
(6一x)(一2)=2(x
3
一6x
2
),0≤x≤6.令h(x)=2(x
3
一6x
2
),则h’(x)=6(x
2
—4x),h’(4)=0,h(0)=0,h(4)=一64,h(6)=0,即z(x,y)在边界x+y=6(0≤x≤6)上的最大值为0,最小值为一64. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Czr4777K
0
考研数学一
相关试题推荐
设齐次线性方程组,其中a≠0,b≠0,n≥2,试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设A=,A*是A的伴随矩阵,则(A*)-1=_________.
设矩阵A=已知线性方程组AX=β有解但不唯一,试求:(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.证明当t>0时,.
(2003年试题,二)设向量组I:α1,α2……αs可由向量组Ⅱ:β1β2……βs线性表示,则().
(1997年试题,3)对数螺线p=eθ在点处的切线的直角坐标方程为_____________.
随机试题
文化教育权利
人体内O2、CO2进出细胞膜是通过
A、支气管哮喘B、支气管扩张C、喘息型慢性支气管炎D、支气管肺癌E、浸润性肺结核两肺散在湿啰音,伴哮鸣音及呼气延长()
当业主方和施工方发生利益冲突或矛盾时,受业主的委托进行工程建设监理活动的监理机构应该以事实为依据,以法律和合同为准绳进行处理,这体现了,监理的()。
在下列关于社会主义初级阶段特定含义的表述中,正确的有( )。
为了工作方便,导游不应随便去异性旅游者房间,有事应在门口与客人商量、讨论。()
推动社会主义文化大发展大繁荣的根本要求和根本保证是()。
就诺贝尔奖而言,奖项内容具体包括()。
Youwillheararadiointerviewaboutthesportswearindustry.Foreachquestion23-30,markoneletterA,BorCforthecorrec
We’ll______neverforget______inNewYorklastyear.
最新回复
(
0
)