首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 若二阶常系数线性齐次微分方程y"+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay′+by=x满足条件y(0)=2,y′(0)=0的解y=_______.
[2009年] 若二阶常系数线性齐次微分方程y"+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay′+by=x满足条件y(0)=2,y′(0)=0的解y=_______.
admin
2021-01-19
63
问题
[2009年] 若二阶常系数线性齐次微分方程y"+ay′+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y"+ay′+by=x满足条件y(0)=2,y′(0)=0的解y=_______.
选项
答案
先由通解可得其特征值r
1
=r
2
=1,从而构造出特征方程,求出二阶常系数线性齐次方程,于是可求出a,b,然后解二阶非齐次方程. 由二阶常系数线性齐次微分方程的通解y=(C
1
+C
2
x)e
x
知,二阶常系数线性齐次微分方程y"+ay′+by=0的特征值是r
1
=r
2
=1.因而特征方程为(r-1)
2
=r
2
-2r+1=0, 二阶常系数线性齐次微分方程为y"一2y′+y=0,故a=一2,b=1.因而非齐次方程为y"一2y′+y=x.下面求非齐次方程 y"一2y′+y=x ① 的特解.由题设条件知,其特解形式为y
*
=Ax+B.代入方程①得到(y
*
)"=0,(y
*
)′=A, 于是有 一2A+Ax+B=x, 即(A一1)x-2A+B=0, 所以A-1=0,B一2A=0,则A=1,B=2.于是一特解为y
*
=x+2.非齐次方程的通解为 y=(C
1
+C
2
x)e
x
+x+2, ② 将y(0)=2,y′(0)=2代入方程②得C
1
=0,C
2
=一1,所以满足初始条件的解为 y=xe
x
+x+2.
解析
转载请注明原文地址:https://kaotiyun.com/show/s884777K
0
考研数学二
相关试题推荐
心形线r=a(1+cosθ)(常数a>0)的全长为________.
[*]
设f’(1)=a,则数列极限=_______.
设A是n阶矩阵,且A的行列式|A|=0,则A().
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:(I)A2;(Ⅱ)矩阵A的特征值和特征向量.
设4阶方阵有特征值2和1,则a=________,b=________。
设三元二次型χ12+χ22+5χ32+2tχ1χ2-2χ1χ3+4χ2χ3是正定二次型,则t∈_______.
已知二次型f(χ1,χ2,χ3)=χ12+4χ22+4χ32+2λχ1χ2-2χ1χ3+4χ2χ3.当λ满足什么条件时f(χ1,χ2,χ3)正定?
(2005年试题,15)设函数f(x)连续,且f(0)≠0,求极限
[2017年]甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,如图1.3.5.19,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记
随机试题
请你比较说明CIF和DES贸易术语的区别。
可以采用扭转力拔牙的是
患儿,男,2岁。因肺部感染,需肌内注射青霉素治疗,最佳的注射部位是
李某从田某处购得一辆轿车,但未办理过户手续。在一次查验过程中,某市公安局认定该车系走私车,予以没收。李某不服,向省公安厅申请复议,后者维持了没收决定。李某提起行政诉讼。下列哪一选项是正确的?(卷二真题试卷第46)
关于对纳税人、扣缴义务人未缴少缴税款的追征制度,下列说法正确的是()。
投资银行在进行股票承销的时候,不同的承销方式中投资银行承担不同责任和风险。在以下承销方式中,承销商承担销售和价格全部风险的是()。
根据以下资料,回答问题。截至2014年12月底,全国实有各类市场主体6932.22万户,比上年末增长14.35%.增速较上年同期增加4.02个百分点;注册资本(金)129.23万亿元,比上年末增长27.70%。其中,企业1819.28万户,个体工
甲公司经常派业务员乙与丙公司订立合同。乙调离后,又持盖有甲公司公章的合同书与尚不知其已调离的丙公司订立一份合同,并按照通常做法提走货款,后逃匿。对此甲公司并不知情。丙公司要求甲公司履行合同,甲公司认为该合同与己无关,予以拒绝。下列选项哪一个是正确的?
Genetherapyandgene-baseddrugsaretwowayswecouldbenefitfromourgrowingmasteryofgeneticscience.Buttherewillbeo
A、SheworkedasapeacemakerbetweentheU.S.andUK.B、ShefoundedthefirstprivateinfirmaryinBritain.C、Sheadvocatedwome
最新回复
(
0
)