首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P。
已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P。
admin
2018-12-29
33
问题
已知二次曲面方程x
2
+ay
2
+z
2
+2bxy+2xz+2yz=4可以经过正交变换
化为椭圆柱面方程η
2
+4ζ
2
=4,求a,b的值和正交矩阵P。
选项
答案
根据题意,矩阵[*]是相似的,则tr(A)=tr(B),从而2+a=5,a=3。又因为|A|=|B|,所以b=1。 此时,矩阵A=[*],特征值为λ
1
=0,λ
2
=1,λ
3
=4。 由(λ
i
E—A)x=0,可得属于特征值λ
1
=0,λ
2
=1,λ
3
=4的特征向量分别为 α
1
=(1,0,—1)
T
,α
2
=(1,—1,1)
T
,α
3
=(1,2,1)
T
。 将α
1
,α
2
,α
3
单位化,得到 [*] 令P=[*],即P为所求的正交矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/DDM4777K
0
考研数学一
相关试题推荐
证明:正项级数与数列{(1+a1)(1+a2).….(1+n)}是同敛散的.
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫0ξf(x)dx=(1-ξ)f(ξ).
如图1-7-1所示,设函数当f具有连续的一阶偏导数时,进一步再求u’’xx(x,y)和u’’yy(x,y).
有一椭圆形薄板,长半轴为a,短半轴为b,薄板垂直于水平面,而其短半轴与水平面相齐,求水对薄板的侧压力.
求微分方程的通解.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设有两个n元齐次线性方程组Ax=0及Bx=0,证明:若Ax=0得解都是Bx=0的解,则r(A)≥r(B).
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.
设X1,X2,…,Xn是来自标准正态总体的简单随机样本,和S2为样本均值和样本方差,则
设有参数方程0≤t≤π.求证该参数方程确定y=y(x),并求定义域;
随机试题
葡萄酒斑状血管瘤属于
患者因红斑狼疮出现眼睑、下肢浮肿,胸胁胀满,面色无华;腰膝酸软,面热肢冷,口干;舌淡胖,苔少,脉沉细.其中医辨证为()
下列事项中,可能引起资本公积变动的有()。
2014年1月1日,甲公司从二级市场购入乙公司分期付息、到期还本债券面值l200元,支付价款1050万元,另支付相关交易费用12万元。该债券系乙公司于2014年1月1日发行,期限为3年,票面年利率为5%。甲公司拟持有该债券至到期,甲公司持有乙公司债
茂腔是山东独特的地方戏曲。由茂腔经典剧目《墙头记》改编制作而成的茂腔动漫剧既具有浓郁的民俗风情又不乏时尚元素,深受观众喜爱。材料反映的文化生活道理是()。
公安机关的人民警察因履行职责的紧急需要,经(),可以优先乘坐公共交通工具,遇交通阻碍时,优先通行。
《宪法》第一条规定:“中华人民共和国是工人阶级领导的、以工农联盟为基础的人民民主专政的社会主义国家。”这条规定表明了我国的()。
掌握辩证唯物主义和历史唯物主义,从本质意义上是使人()。
两个相同的瓶子装满某种化学溶液,一个瓶子中溶质与水的体积比是3:1.另一个瓶子中溶质与水的体积比是4:1,若把两瓶化学溶液混合,则混合后的溶质和水的体积之比是:
简述贪污罪的概念及犯罪构成。
最新回复
(
0
)