首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数y=f(x)在(一∞,+∞)连续,其二阶导函数的图形如图1-2-2所示,则y=f(x)的拐点个数是( )
函数y=f(x)在(一∞,+∞)连续,其二阶导函数的图形如图1-2-2所示,则y=f(x)的拐点个数是( )
admin
2019-01-19
69
问题
函数y=f(x)在(一∞,+∞)连续,其二阶导函数的图形如图1-2-2所示,则y=f(x)的拐点个数是( )
选项
A、1。
B、2。
C、3。
D、4。
答案
C
解析
只须考查f"(x)=0的点与f"(x)不存在的点。
f"(x
1
)=f"(x
4
)=0,且在x=x
1
,x
4
两侧f"(x)变号,故凹凸性相反,则(x
1
,f(x
1
)),(x
4
,
f(x
4
))是y=f(x)的拐点。
x=0处.f"(0)不存在,但f(x)在x=0连续,且在x=0两侧f"(x)变号,因此(0,f(0))也是y=f(x)的拐点。
虽然f"(x
3
)=0,但在x=x
3
两侧f"(x)>0,y=f(x)是凹的。(x
3
,x
3
))不是y=f(x)的拐点。因此共有三个拐点,故选C。
转载请注明原文地址:https://kaotiyun.com/show/DIP4777K
0
考研数学三
相关试题推荐
(16年)求幂级数的收敛域及和函数.
(97年)设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是【】
设f(χ)有一阶连续导数,f(0)=0,当χ→0时,∫0f(χ)f(t)dt与χ2为等价无穷小,则f′(0)等于【】
交换积分次序=_______.
设n维实向α=(α1,α2,…,αn)T≠0,方阵A=ααT.(1)证明:对于正整数m,存在常数t,使Am=tm-1A,并求出t;(2)求可逆矩阵P,使P-1AP成对角矩阵.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设f(x)在[0,1]上连续,在(0,1)内可导,且ef(x)arctanxdx=1,f(1)=ln2,试证:存在点ξ∈(0,1),使得(1+ξ2)f’(ξ)arctanξ=一1.
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设f(χ)和φ(χ)在(-∞,+∞)上有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则【】
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|又f(1)=0,证明:|∫01f(x)dx|≤ln2.
随机试题
合法有效的行政执法行为具有()。
激光打印机的特点是
心烦神乱,失眠多梦,惊悸怔忡,胸中懊,舌红,脉细数者,治宜选用
A、水提醇沉法B、醇提水沉法C、醇提醚沉法D、铅盐沉淀法E、酸提碱沉法用酸性水从药材中提取出生物碱后再使其从水中析出的方法为
吸收直接投资是指建设项目按照()的原则,直接吸收国家、法人、个人和外商投入资本的一种资本金筹集的重要方式。
个体的自我意识发展经历了从生理自我到社会自我,再到______自我的过程。
2017年1~12月,最接近我国手机出货量接近全年平均数的月份是()。
【S1】【S3】
A、Lossoftheforests.B、LossofitshabitatC、Human’slimitlesshunting.D、Limitedfoodresources.B录音提到,对于现存的熊类而言,最大的威胁是它们栖息地的
Arepasswordspasse(过时的)?It’sstartingtoseemlikeit.Everybodyhatesthem,andnobodycanrememberalltheonesthey’vecrea
最新回复
(
0
)