首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f’(x)在(a,+∞)内存在且大于零,则F(x)
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f’(x)在(a,+∞)内存在且大于零,则F(x)
admin
2017-09-07
46
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则-x
0
必是-f(-x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,f’(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足zf’’(x)+3x[f’(x)]
2
=1-e
-x
,且f’(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
-2y
2
+2xy-x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
n()
(x)在点x
0
=-(n+1)处取得极小值.
正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则-f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(a)=f’(ξ)(x-a),则
由f’’(x)>0知,f’(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有f’(x)>f’(ξ),从而由上式得F’(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;
对于(3),因f’(x
0
)=0,故所给定的方程为
,显然,不论x
0
>0,还是x
0
<0,都有f’’(x
0
)>0,于是由f’(x
0
)=0与f’’(x
0
)>0得f(x)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
y’-2yy’+xy’+y-x=0, ①
再求导,得
(3y
2
-2y+z)y’’+(6y-2)(y’)
2
+2y’=1. ②
令y’=0,则由式①得y=x,再将此代入原方程有2x
3
-x
2
=1,从而得y=y(x)的唯一驻点
x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得y’’|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
(n-1)
=(x+n)e
x
,f
(n+1)
(x)=[x+(n+1)]e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.
令f
(n+1)
(x)=0,得f
(n)
(x)的唯一驻点x
0
=-(n+1);又因f
(n+2)
(x
0
)=e
-(n+1)
>0,故点x
0
=-(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=-e
-(n+1)
,该结论正确.
故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://kaotiyun.com/show/DRr4777K
0
考研数学一
相关试题推荐
已知二次曲面x2+4y2+3z2+2axy+2xz+2(a-2)yz=1是椭球面,则a的取值为_______.
求函数f(x)=的麦克劳林展开式.
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
设X1,X2,…,Xn是取自正态总N(μ,σ2)的简单随机样本,其样本均值和方差分别为,S2,则服从自由度为n的χ2分布的随机变量是
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;(Ⅱ)BTB是正定矩阵.
设f(x,y,z)是连续函数,∑是平面x—y+z一1=0在第四卦限部分的上侧,计算
设f(x)在区间[0,1]上可导,证明:存在ξ[(0,1),使得2f(ξ)+ξf’(ξ)=0.
设A,B为两个随机事件,则=_________.
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x一3e2x为特解,求该微分方程.
已知fn(x)满足fn’(x)=fn(x)+xn-1ex(n为正整数),且求函数项级数之和.
随机试题
圣人不凝滞于物,而能与世推移。凝滞:物:推移:
影响性交后精子穿透力试验效果的因素有
治疗休克的基本措施是
关于抗体本底测定错误的陈述是
为补充体内铁的储存量,营养性缺铁性贫血口服铁剂应维持到
对工程项目管理而言,风险是指可能出现的()的不确定因素。
你的上级领导不懂技术,你对技术比较精通,上级领导安排的工作有很多不合理之处,使你无所适从,你怎么办?
有135人参加某单位的招聘,31人有英语证书和普通话证书,37人有英语证书和计算机证书,16人有普通话证书和计算机证书,其中一部分人有三种证书,而一部分人则只有一种证书。该单位要求必须至少有两种上述证书的应聘者才有资格参加面试。问至少有多少人不能参加面试?
当样本容量增大1倍时,总体平均数的置信区间长度会
为现代心理学的发展提供了实验方法的是
最新回复
(
0
)