首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α. 证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆; (Ⅱ)BTB是正定矩阵.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α. 证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆; (Ⅱ)BTB是正定矩阵.
admin
2015-05-07
46
问题
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A
2
α线性无关,且A
3
α=3Aα-2A
2
α.
证明:(Ⅰ)矩阵B=(α,Aα,A
4
α)可逆;
(Ⅱ)B
T
B是正定矩阵.
选项
答案
(Ⅰ)由于A
3
α=3Aα-2A
2
α,故 A
4
α=3A
2
α-2A
3
α=3A
2
α-2(3Aα-2A
2
α)=7A
2
α-6Aα. 若k
1
α+k
2
Aα+k
3
A
4
α=0,即k
1
α+k
2
Aα+k
3
(7A
2
α-6Aα)=0, 亦即k
1
α+(k
2
-6k
3
)Aα+7k
3
A
2
α=0,因为α,Aα,A
2
α线性无关,故 [*] 所以,α,Aα,A
4
α线性无关,因而矩阵B可逆. (Ⅱ)因为(B
T
B)
T
=B
T
(B
T
)
T
=B
T
B,故B
T
B是对称矩阵.又[*]≠0,由于矩阵B可逆,恒有Bx≠0,那么恒有x
T
(B
T
B)x=(Bx)
T
(Bx)>0,故二次型x
T
(B
T
B)x是正定二次型,从而矩阵B
T
B是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/xi54777K
0
考研数学一
相关试题推荐
设二次型f(x,y,z)=2x2+y2-4xy-4yz,用正交变换x=Qy将其化为标准形,并写出Q;
设A为奇数阶矩阵,且AAT=ATA=E,|A|>0,则|A-E|=________.
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.根据(1)中的矩阵B,证明A与B相似;
线性方程组的解是________.
设,B是3阶非零矩阵,且AB=0,则Ax=0的通解是________.
设u(x,y)具有二阶连续偏导数,证明无零值的函数u(x,y)可分离变量(即u(x,y)=f(x)·g(y))的充分必要条件是
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z一z(x)分别由下列两式确定:exy一xy=2和z=∫0xsint2dt.求.
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
设试验成功的概率为,失败的概率为,独立重复试验直到成功两次为止,试求试验次数的数学期望.
随机试题
甲集团公司经A市人民政府的批准,在该市的繁华地区建商业大厦,为此在这一地区的40户居民要拆迁。甲集团公司取得该市房屋拆迁主管部门的许可后,分别与40户居民就拆迁补偿形式和补偿金额、安置用房面积和安置地点、搬迁过渡方式和过渡期限等问题进行协商并签订协议,其中
吾在天地之间,犹小石小木之在大山也,方存乎见少,又奚以自多?方:奚以:
强心苷治疗慢性心功能不全的最基本作用是
面部危险三角区感染病灶不宜做热敷的理由是
按照有关规定,一个合同段内的工程应按()进行划分。
××市人民政府×政字[2010]30号关于同意成立商务局商务信息中心的××市商务局:贵局“×商字[2010]15号”来文收悉。经研究决定:一、基本同意
--Markbrokehislegwhenhewasplayingfootball.--______wasthat?
Youshouldspendabout20minutesonQuestions29-40whicharebasedonReadingPassage3onthefollowingpages.Questions29-3
ThelargestChinatownintheUnitedStatesisin______.
A、Thetoiletisclogged.B、Thewindowneedstobefixed.C、Thesinkleaks.D、Theshowerneedstobereplaced.B
最新回复
(
0
)