首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又 (x0,y0)≠0,求证: (Ⅰ) (Ⅱ)曲面z=f(x,y)与柱面φ(x,y)=0的交线Γ在点P0(x0,y0,z
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又 (x0,y0)≠0,求证: (Ⅰ) (Ⅱ)曲面z=f(x,y)与柱面φ(x,y)=0的交线Γ在点P0(x0,y0,z
admin
2015-05-07
68
问题
设f(x,y),φ(x,y)均有连续偏导数,点M
0
(x
0
,y
0
)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又
(x
0
,y
0
)≠0,求证:
(Ⅰ)
(Ⅱ)曲面z=f(x,y)与柱面φ(x,y)=0的交线Γ在点P
0
(x
0
,y
0
,z
0
)(z
0
=x
0
,y
0
))处的切线与xy平面平行.
选项
答案
(Ⅰ)由题设条件[*]方程φ(x,y)=0在点M
0
邻域确定隐函数y=y(x),且满足y(x
0
)=y
0
. M
0
点是z=f(x,y)在条件φ(x,y)=0下的极值点[*]z=f[x,y(x)]以x=x
0
为极值点.它的必要条件是 [*] 由φ [ x,y(x)]=0及隐函数求导法得 φ’
x
+φ’
y
.y’(x)=0,即y’(x)=[*] 代入(*)得 [*] (Ⅱ)空间曲线Γ:[*]在P
0
(x
0
,y
0
,z
0
)处的切线的方向向量(切向量)为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/oi54777K
0
考研数学一
相关试题推荐
设A,B,C,D为n阶矩阵,若ABCD=E,证明:A,B,C,D均为可逆矩阵;
设A是n阶矩阵,则
设A为n阶矩阵,且|A|=1,则(A*)*=().
设A是n阶矩阵,α,β是n维列向量,a,b,c是实数,已知|A|=a,=________.
设n阶矩阵
设f(x,y)在点O(0,0)的某邻域U内连续,且,常数a>.讨论f(0,0)是否为f(x,y)的极值?若是极值,判断是极大值还是极小值?
设证明:{an}收敛,并求
设随机变量X3,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从N(0,4),X3服从参数为λ=3的泊松分布,记Y=X1-2X2+3X3,求D(Y).
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
历史上科学家皮尔逊进行抛掷一枚匀称硬币的试验,他当时掷了12000次,正面出现6019次,现在我们若重复他的试验,试求:(Ⅰ)抛掷12000次正面出现频率与概率之差的绝对值不超过当年皮尔逊试验偏差的概率;(Ⅱ)要想使我们试验正面出现的频
随机试题
Duringthetwentiethcenturytherehasbeenagreatchangeinthelivesofwomen.Awomanmarryingattheendofthenineteenth
急性动脉栓塞可以出现以下哪些临床表现
新生儿病理性黄疸常见的原因不包括
患者,男,40岁。咳嗽、多痰10年余,痰经放置出现分层现象。查体:有杵状指(趾)。应首先考虑的是
商业银行的下列做法中哪些不符合法律规定?()
按照《注册建造师管理规定》,在下列情形中,不予注册的情形包括()。
当万能寿险的被保险人遭受保险事故死亡时,保险人支付的全部死亡给付额是( )。
股利发放率是上市公司财务分析的重要指标,下列关于股利发放率的表述中,正确的有()。
《中华人民共和国劳动合同法》规定,劳务派遣单位应当与被派遣劳动者订立不少于________的固定期限劳动合同,按月支付劳动报酬。
注册会计师交由被审计单位负责询证函的起草、寄发和收回。()
最新回复
(
0
)