首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型 f(x1,x2,…,xn)= (1)用矩阵乘积的形式写出此二次型. (2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型 f(x1,x2,…,xn)= (1)用矩阵乘积的形式写出此二次型. (2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
admin
2018-11-20
93
问题
设A是一个可逆实对称矩阵,记A
ij
是它的代数余子式.二次型
f(x
1
,x
2
,…,x
n
)=
(1)用矩阵乘积的形式写出此二次型.
(2)f(x
1
,x
2
,…,x
n
)的规范形和X
T
AX的规范形是否相同?为什么?
选项
答案
(1)由于A是实对称矩阵,它的代数余子式A
ij
=A
ji
,[*],并且A
-1
也是实对称矩阵,其(i,j)位的元素就是A
ij
/|A|,于是f(x
1
,x
2
,…,x
n
)=X
T
A
-1
X. (2)A
-1
的特征值和A的特征值互为倒数关系,因此A
-1
和A的正的特征值的个数相等,负的特征值的个数也相等,于是它们的正,负惯性指数都相等,从而A
-1
和A合同,f(x
1
,x
2
,…,x
n
)和X
T
AX有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/DfW4777K
0
考研数学三
相关试题推荐
设(X,Y)在区域D:0<x<1,|y|≤x内服从均匀分布.设Z=2X+1,求D(Z).
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.写出X的分布律;
设α1=α2=α3=线性相关,则a=________.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为________.
现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球.(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.
已知齐次线性方程组同解,求a,b,c的值。
已知方程组的一个基础解系为(b11,b12,…,b1.2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
随机试题
下面各项中,不是云计算特点的是()
慢性肺心病患者发病的关键环节是
固定桥修复前的口腔准备是
我国境内新办软件生产企业经认定后,从()起,第一年至第二年免征企业所得税,第三年至第五年减半征收企业所得税。
ArecentstudyfindscompanieswhoseCEOscommittedapersonalindiscretion—suchasinfidelity,substanceabuseanddishonesty—e
美国的韦纳认为,学生的归因过程主要是按照()等维度进行的。
“能清楚地说出自己想说的事”,这属于()的目标。
某外国商人甲在我国领域内犯重婚罪,对甲应如何处置?()
爱因斯坦说:“人们只懂得应用科学本身是不够的。关心人本身,应当始终成为一切技术上的奋斗目标;关心人的劳动和产品分配以及一些尚未解决的重大问题。用以保证我们科学思想的成果会造福于人类。而不致成为祸害。”这一思想揭示了
FERMENT:
最新回复
(
0
)