首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3, Aα2=4α1+4α2+α3,Aα3=一2α1+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求矩阵A的特征向量; (Ⅲ)求矩阵A*
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3, Aα2=4α1+4α2+α3,Aα3=一2α1+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求矩阵A的特征向量; (Ⅲ)求矩阵A*
admin
2020-07-03
13
问题
已知A是3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,满足Aα
1
=一α
1
一3α
2
—3α
3
,
Aα
2
=4α
1
+4α
2
+α
3
,Aα
3
=一2α
1
+3α
3
.
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求矩阵A的特征向量;
(Ⅲ)求矩阵A
*
一6E的秩.
选项
答案
(Ⅰ)据已知条件,有 A(α
1
,α
2
,α
3
)=(一α
1
—3α
2
—3α
3
,4α
1
+4α
2
+α
3
,一2α
1
+α
3
) =(α
1
,α
2
,α
3
)[*] 记B=[*]及P
1
=(α
1
,α
2
,α
3
),那么由α
1
,α
2
,α
3
线性无关知矩阵P
1
可逆,且P
1
—1
AP
1
=B,即A与B相似. 由矩阵B的特征多项式 [*] 得矩阵B的特征值是1,2,3.从而知矩阵A的特征值是1,2,3. (Ⅱ)由(E一B)x=0得基础解系β
1
=(1,1,1)
T
,即矩阵B属于特征值λ=1的特征向量,由(2E—B)x=0得基础解系β
2
=(2,3,3)
T
,即矩阵B属于特征值λ=2的特征向量,由(3E—B)x=0得基础解系β
3
=(1,3,4)
T
,即矩阵B属于特征值λ=3的特征向量,那么令P
2
=(β
1
,β
2
,β
3
),则有P
2
—1
BP
2
=[*].于是令 P=P
1
P
2
=(α
1
,α
2
,α
3
)[*] =(α
1
+α
2
+α
3
,2α
1
+3α
2
+3α
3
,α
1
+3α
2
+4α
3
), 则有p—1AP=(P
1
P
2
)
—1
A(P
1
P
2
)=P
2
—1
(P
1
—1
AP
1
)P
2
=P
2
—1
BP
2
=[*] 所以矩阵A属于特征值1,2,3的线性无关的特征向量依次为 k
1
(α
1
,α
2
,α
3
),k
2
(2α
1
+3α
2
+3α
3
),k
3
(α
1
+3α
2
+4α
3
),k
i
≠0(i=1,2,3). [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Dh84777K
0
考研数学二
相关试题推荐
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0。记n阶矩阵A=αβT。求A2;
[*]
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x).
A为三阶实对称矩阵,A的秩为2,且求矩阵A。
计算(a>0),其中D是由曲线y=-a+和直线y=-χ所围成的区域.
若连续函数满足关系式则f(x)=()
设向量组α1,α2,α3线性无关,向量β1可由向量组α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有()
曲线y=e-xsinx(0≤x≤3π)与x轴所围成图形的面积可表示为()
设随机变量X和Y相互独立,且都服从指数分布E(λ),则下列结论正确的是()
微分方程y"-3y’+2y=2ex满足的特解为___.
随机试题
阅读下面的一段文字,然后回答下题。孔子曰:“譬如为山,未成一篑,止,吾止也;譬如平地,虽复一篑,进,吾往也。”孟子曰:“有为者,譬若掘井,掘井九仞,而不及泉,犹为弃井也。”成败之数,视此而已。文中运用了什么样的修辞手法?
交换二次积分的积分次序.
A、次生苷B、氧苷C、氮苷D、硫苷E、碳苷苦杏仁苷的结构类型为()。
甲公司欠税40万元,税务局要查封其相应价值产品。甲公司经理说:“乙公司欠我公司60万元货款,贵局不如行使代位权直接去乙公司收取现金。”该局遂通知乙公司缴纳甲公司的欠税,乙公司不配合;该局责令其限期缴纳,乙公司逾期未缴纳;该局随即采取了税收强制执行措施。关于
我国的政府预算由()组成。
黄河公司以其房屋作抵押,先后向甲银行借款100万元,乙银行借款300万元,丙银行借款500万元,并依次办理了抵押登记。后丙银行与甲银行商定交换各自抵押权的顺位。并办理了变更登记,但乙银行并不知情。因黄河公司无力偿还三家银行的到期债务,银行拍卖其房屋,仅得价
邓小平理论的主题是()。
禁止与取缔,是指公安机关依法对于某些犯罪行为和违反治安管理、扰乱社会秩序、妨害公共安全的行为宣布禁止,予以取缔,并对违禁者予以法律制裁。()
胡蓝之狱明太祖朱元璋借口丞相胡惟庸谋反,大肆株连杀戮功臣宿将的重大政治案件。与蓝玉案合称胡蓝之狱。起于明洪武十三年(1380),终于二十五年。明初的胡惟庸案、蓝玉案,史称“胡蓝之狱”。明太祖朱元璋借此两案,大开杀戒,从洪武十三年到洪武二十六年的14年间,
在其他的条件不变的条件下,资本有机构成的不断地提高,会导致()
最新回复
(
0
)