首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,且满足A2+2A=O。已知A的秩r(A)=2。 (Ⅰ)求A的全部特征值; (Ⅱ)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵。
设A为三阶实对称矩阵,且满足A2+2A=O。已知A的秩r(A)=2。 (Ⅰ)求A的全部特征值; (Ⅱ)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵。
admin
2018-04-18
52
问题
设A为三阶实对称矩阵,且满足A
2
+2A=O。已知A的秩r(A)=2。
(Ⅰ)求A的全部特征值;
(Ⅱ)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵。
选项
答案
(Ⅰ)设λ为A的一个特征值,对应的特征向量为α,则Aα=λα(α≠0),且 A
2
α=λ
2
α。 于是 (A
2
+2A)α=(λ
2
+2λ)α。 由A
2
+2A=O可知 (λ
2
+2λ)α=0。 又因α≠0,故有λ
2
+2λ=0,故λ=一2或λ=0。 因为实对称矩阵A必可以对角化,且r(A)=2。所以 [*] 因此,矩阵A的全部特征值为λ
1
=λ
2
=一2,λ
3
=0。 (Ⅱ)矩阵A+kE仍为实对称矩阵,由(Ⅰ)知,A+kE的全部特征值为一2+k,一2+k,k。 于是,当k>2时,矩阵A+kE的全部特征值大于零,即矩阵A+kE为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/DpX4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上有连续的导数,证明
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D,求:(1)D绕x轴旋转一周所成的旋转体的体积V(a);(2)a的值,使V(a)为最大.
已知求a,b的值.
设某产品的需求函数Q=q(p),它对价格的弹性为ε(0<ε<1).已知产品收益R对价格的边际效应为c(元),则产品的产量应是________个单位.
设①求作可逆矩阵P,使得(AP)TAP是对角矩阵.②k取什么值时A+kE正定?
已知f(x)=是连续函数,求a,b的值.
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,fˊ(0)=0.证明:在[-1,1]内存在ξ,使得fˊˊˊ(ξ)=3.
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
设A为n阶实矩阵,则对线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0,必有()
对某一目标进行多次同等规模的轰炸,每次轰炸命中目标的炸弹数目是个随机变量,假设其期望值为2,标准差是1.3,计算在100次轰炸中有180颗到220颗炸弹命中目标的概率.
随机试题
老年患者,大便艰涩,排出困难,四肢不温,腹中冷痛,腰膝酸冷,舌淡苔白,脉沉迟。其治疗宜选
关于早产儿的喂养,下述哪项是错误的
A.自牙颈部牙骨质向牙冠方向散开,止于游离龈和附着龈固有层的牙龈纤维B.自牙槽嵴向牙冠方向展开,穿过固有层止于游离龈和附着龈固有层的牙龈纤维C.位于牙颈周围的游离龈中,呈环行排列的牙龈纤维D.自牙颈部的牙骨质,越过牙槽突外侧皮质骨骨膜,进入牙槽突、前
如图所示,桁架结构中只作用悬挂重块的重力W,此桁架中杆件内力为零的杆数为:
原始凭证金额出现错误的,应当由开具单位更正,并在更正处加盖出具凭证单位的印章。 ( )
与单一法人客户相比,()不是集团法人客户的信用风险具有的特征。
甲为一有限责任公司的小股东,不参与公司经营管理。根据公司法律制度的规定,下列文件中,甲有权查阅和复制的有()。(2009年)
上海中心大厦楼高()米,外观为正方形柱体。
丽丽因为自己常常遭受来自丈夫的家暴而找到社会工作者。社会工作者根据()迹象认为丽丽已经具有“受虐妇女综合征”的特质。
Becauseofthecomingheavyrain,theracingcompetitionofyourcollegecan’tbeheldattheopen-airplayground.Writeanotic
最新回复
(
0
)