首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2019-08-06
35
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2X+ln
2
x+k一2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令f’(x)=0,可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)最小值.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>一2时,f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=一2时,f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<一2时,需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<一2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/DwJ4777K
0
考研数学三
相关试题推荐
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设f(x)二阶连续可导,且=______.
设随机变量X服从参数为2的指数分布,令求:(U,V)的分布;
设f(x)在[一1,1]上可导,f(x)在x=0处二阶可导,且f’(0)=0,f’’(0)=4.求
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
求x[1+yf(x2+y2)]dxdy,其中D是由y=x3,y=1,x=一1所围成的区域,f(x,y)是连续函数.
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=一1,求极限
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量U=X+Y的方差.
随机试题
A.羟基脲B.α-干扰素C.氟达拉滨D.苯丁酸氮芥慢性粒细胞白血病化疗首选
A、中性粒细胞碱性磷酸酶(NAP)积分值常为“0”B、中性粒细胞碱性磷酸酶(NAP)积分值增高C、白血病细胞过氧化酶呈弱阳性反应D、白血病细胞酸性磷酸酶染色为阳性且不被L-酒石酸抑制E、幼红细胞的过碘酸一雪夫反应呈
A.体液传播B.吸血节肢动物传播C.消化道传播D.呼吸道传播E.土壤传播乙型肝炎可通过哪种途径传播
()是指在了解和掌握将要教授的班级状况的基础上,新手型教师在指导者的指导下观看其他教师对此班级的现场教学或教学录像,从中找到自己教学的最佳行为的过程。
依照我国宪法规定,可以依法属于集体所有的有()。
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记则().
设A为3阶矩阵,B=(β1,β2,β3),β1为AX=0的解,又r(AB)<min{r(A),r(B)},则r(AB)=()。
Abovethetreesarethehills,______magnificencetheriverfaithfullyreflectsonthesurface.
Whichofthefollowingareinfavourofabortionifitisnecessary?
A、Hewillaskthewomantoacceptthediamondring.B、Hewillacceptthefactandtrytoforgetthewoman.C、Hewillthrowther
最新回复
(
0
)