首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2019-08-06
24
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2X+ln
2
x+k一2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令f’(x)=0,可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)最小值.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>一2时,f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=一2时,f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<一2时,需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<一2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/DwJ4777K
0
考研数学三
相关试题推荐
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解.
证明:满足微分方程y(4)-y=0并求和函数S(x).
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0.f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
设随机变量(X,Y)的联合密度函数为(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
随机向区域D:内扔一点,该点落在半圆内任何区域的概率与该区域的面积成正比,则落点与原点的连线与z轴的夹角小于的概率为______.
设f(x)在[一1,1]上可导,f(x)在x=0处二阶可导,且f’(0)=0,f’’(0)=4.求
设A和B是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是:
随机试题
血液透析过程中,患者出现寒战,继而发热,首要的处理是
发现骨折4周,X线片上骨折周围有较多骨痂,但骨折线仍清晰可见,且有逐日硬化趋向,这种骨折是
乳腺癌出现"酒窝征"的机制是
手少阳三焦经的走向为
对刘某离岗二年以上的行为,医院应当报告准予注册的卫生行政部门的期限是医院未按规定履行报告职责,若导致严重后果,由卫生行政部门给予警告,并对该机构的行政负责人给予
施工企业即从事建筑安装又从事货物销售,如果企业不分别核算或不能准确核算营业税和增值税的,则()。
在()以突出广告主题为主给人以丰富的联想空间,在人气积聚的配合下会产生很好的效果。
存货模式和随机模式是确定最佳现金持有量的两种方法,对这两种方法的以下表述中,正确的有()。(2005年)
某公司年度审计期间,审计人员发现一张发票,上面有赵义、钱仁礼、孙智、李信4个签名,签名者的身份各不相同,是经办人、复核、出纳或审批领导之中的一个,且每个签名都是本人所签。询问4位相关人员,得到以下回答:赵义:“审批领导的签名不是钱仁礼。”钱仁礼:“复核
《四民月令》(华东师范大学2005年中国通史真题)
最新回复
(
0
)