首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×5阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程BX=0与ABX=0是同解方程组.
设A是m×5阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程BX=0与ABX=0是同解方程组.
admin
2020-03-05
46
问题
设A是m×5阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0, 若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关, 所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
,线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n一r(AB)≥n一r+1,r(AB)≤r一1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/DyS4777K
0
考研数学一
相关试题推荐
随机变量X的密度函数为f(x)=ke-|x|(一∞<x<+∞),则E(X2)=_________.
设f(x)是以4为周期的函数,当x∈[一2,2)时,f(x)=且其傅里叶级数的和函数为S(x),则S(9)=_________.
设X1,X2,…,X100相互独立且在区间[一1,1]上同服从均匀分布,则由中心极限定理≈___________.
设随机变量X的概率密度为f(x),则随机变量|X|的概率密f1(x)为
设矩阵A=,B=A2+5A+6E,则(1/5B)-1=_______.
设A是m×n矩阵,B是n×m矩阵.则
幂级数在收敛区间(-a,a)内的和函数S(x)为______.
设在上半平面D={(x,y)丨y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t-2f(x.y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有
微分方程(1一x2)y-xy’=0满足初值条件y(1)=1的特解是________.
随机试题
V形传动带带角外包布破损,每边累计长度不超过带长30%,内包布不允许有破损,其产品是()。
我国古代医学有阴阳五行的病理学说和外因“六淫”、内囚“七情”等病因学说。这些医学理论反映的医学模式是()。
右腕部跌伤,拟为桡骨下端骨折。诊断依据是
《世行采购指南》规定,投标保证金应当在投标有效期满后()天内一直有效。
下列关于市场经济与职业道德关系的说法中,正确的是()。
能够从上述资料中推出的是()。
假设磁头当前位于第105道,正在向磁道序号增加的方向移动。现有一个磁道访问请求序列为35,45,12,68,110,180,170,195,采用SCAN调度(电梯调度)算法得到的磁道访问序列是()。
弱势群体
DirtyBritainBeforethegrasshasthickenedontheroadsidevergesandleaveshavestartedgrowingonthetreesisaperfect
A、Peopledeserveallthedisasters.B、Peopleshouldn’thavedeservedthedisasters.C、Peoplehavebeenreadyforthetornado.D、
最新回复
(
0
)