首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
令A=[*]则(Ⅰ)可写为AX=0, [*] 则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn 线性无关,Aβ1=Aβ2=……=Aβn=0[*]A(β1,β2,…,βn)=O[*]ABT=O[*]B
令A=[*]则(Ⅰ)可写为AX=0, [*] 则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn 线性无关,Aβ1=Aβ2=……=Aβn=0[*]A(β1,β2,…,βn)=O[*]ABT=O[*]B
admin
2022-04-02
62
问题
选项
答案
令A=[*]则(Ⅰ)可写为AX=0, [*] 则(Ⅱ)可写为BY=0,因为β
1
,β
2
,…,β
n
为(Ⅰ)的基础解系,因此r(A)=n,β
1
,β
2
,…,β
n
线性无关,Aβ
1
=Aβ
2
=……=Aβ
n
=0[*]A(β
1
,β
2
,…,β
n
)=O[*]AB
T
=O[*]BA
T
=O. 则α
1
T
,α
2
T
,…,α
n
T
为BY=0的一组解,而r(B)=n,且α
1
T
,α
2
T
,…,α
n
T
线性无关, 因此α
1
T
,α
2
T
,…,α
n
T
为BY=0的一个基础解系.故(Ⅱ)的通解为 X=k
1
α
1
T
+k
2
α
2
T
+…+k
n
α
n
T
(其中k
1
,k
2
,…,k
n
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/E1R4777K
0
考研数学三
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内三阶可导,且.证明:存在ξ∈(0,2),使得f’’’(ξ)=9.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得fˊ(η)fˊ(ζ)=1.
在区间[0,π]上随机取两个数X与Y,则概率P{cos(X+Y)<0)=__________.
已知a1=(-1,1,a,4)T,a2=(-2,1,5,a)T,a3=(a,2,10.1)T是四阶方阵A的属于三个不同特征值的特征向量,则a的取值为().
试证明函数在区间(0,+∞)内单调增加.
已知方程组有解,证明方程组无解.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.求方程组(I)的一个基础解系;
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程BA-1=2AB+4E,且A*α=α,其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
已知下列非齐次线性方程组:当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
随机试题
TheRedistributionofHopeA)"HOPE"isoneofthemostoverusedwordsinpubliclife,uptherewith"change".Yetitmatte
下列叙述错误的是
犬肾为
提出“人命至重,有贵干金,一方济之,德逾于此”观点的是()
十二指肠壶腹(球部)溃疡患者原疼痛节律消失,变为持续上腹痛,伴频繁呕吐隔宿酵酸性食物。推断患者出现的并发症是()
某团队2名游客在旅游过程中突然出现大汗、口渴、头晕、耳鸣、眼花、胸闷、恶心、呕吐、发烧,其中1人还产生神志不清和昏迷的现象。请问,这种症状属于()。
下列依次为上海、广东、福建、北京、四川名点小吃的是()。
扶养专指平辈亲属之间依法发生的经济供养和生活扶助的一种行为。根据上述定义,下列属于扶养的是:
情景:假定你是一名学生,今天得了感冒不能去上课。任务:请你用英语给老师写一张50字左右的请假条,告诉他:(1)你感冒并且头痛;(2)医生建议你在家休息几天;(3)你在家会坚持学习。假条写
Ricci’s"OperationColumbus"Ricci,45,isnowstrikingoutonperhapshisboldestventureyet.HeplanstomarketanEnglis
最新回复
(
0
)