首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
admin
2019-08-06
63
问题
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
选项
答案
因为A,B正定,所以A
T
=A,B
T
=B,从而(A+B)
T
=A+B,即A+B为对称矩阵.对任意的X≠0,X
T
(A+B)X=X
T
AX+X
T
BX,因为A,B为正定矩阵,所以X
T
AX>0,X
T
BX>0,因此X
T
(A+B)X>0,于是A+B为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/WfJ4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)的联合密度函数为求随机变量Z=X+2Y的分布函数和密度函数.
设f(x)二阶可导,f(0)=0,且f’’(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为求ρXZ;
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn.Aαn=0.证明:α1,α2,…,αn线性无关;
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
设f(x)是非负随机变量的概率密度,求Y=的概率密度.
设随机变量X在(0,1)上服从均匀分布,现有一常数a,任取X的四个值,已知至少有一个大于a的概率为0.9,问a是多少?
设有两条抛物线y=nx2+和y=(n+1)x2+,记它们交点的横坐标的绝对值为an。求级数的和.
随机试题
下列有关淬火件装炉前的准备中()是错误的。
下面有关文学常识的表述,不正确的一项是()
阴虚发热型内伤发热的首选方剂是
在社会可聚集的闲置资金一定的条件下,存款利率水平和吸收存款的数量是()。
人民法院适用简易程序审理案件,应当在立案之日起()内审结。
我国是世界上()个成功进行载人航天的国家。
(2011年)设函数则dz|(1,1)=______.
反常积分
设直线L1=(x-1)/2=(y-5)/(-2)=(z+8)/1,L1=则直线L1,L2的夹角为().
Sciencetothehumanmindis______(正如水或空气之于身体).
最新回复
(
0
)