首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,且求证:存在ξ∈(0,π),使得f’(ξ)=0.
设f(x)在[0,π]上连续,在(0,π)内可导,且求证:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2016-07-22
37
问题
设f(x)在[0,π]上连续,在(0,π)内可导,且
求证:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
首先证明f(x)在(0,π)内必有零点. 因为在(0,π)内f(x)连续,且sinx>0,所以,若无零点,则恒有f(x)>0或f(x)<0,从而有[*],与题设矛盾. 所以,f(x)在(0,π)内必有零点. 下面证明f(x)在(0,π)内零点不唯一,即至少有两个零点.用反证法.假设f(x)在(0,π)内只有一个零点x
0
,则f(x)在(0,x
0
)和(x
0
,π)上取不同的符号(且不等于零),否则与[*]矛盾.这样,函数sin(x-x
0
)f(x)在(0,x
0
)和(x
0
,π)上取相同的符号,即恒正或恒负. 那么有:[*] 从而矛盾,所以f(x)在(0,π)内至少有两个零点.于是由罗尔定理即得存在ξ∈(0,π),使得f’(ξ)0.
解析
转载请注明原文地址:https://kaotiyun.com/show/E4w4777K
0
考研数学一
相关试题推荐
已知=().
已知曲面S:2x2+4y2+z2=4与平面π:2x+2y+z+5=0,求:曲面S上的点及其上的切平面与法线方程,使该切平面与平面π平行;
已知非零向量a,b不共线,设c=λa+b,其中λ为实数,证明:|c|取最小值时的向量c垂直于a.
计算I=∮Lx2yzdx+(x2+y2)dy+(x+y+1)dz,其中L为球面x2+y2+z2=5与旋转曲面z=1+x2+y2的交线,从z轴负向看为逆时针方向.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
设曲线(正整数n≥1)在第一象限与坐标轴围成图形的面积为I(n),证明:
设函数f(x,y)连续,F(u,v)=,其中区域Duv为图中阴影部分,则=().
设函数u(x,y)具有连续的一阶导数,1为自点O(0,0)沿曲线γ=sinx至点A(π,0)的有向弧段,求下面曲线积分:∫l=(yu(x,y)+xyu’(x,y)+y+xsinx)dx+(xu(x,y)+xyu’y(x,y)+ey2一x)dy。
求,自点A(1,0,0)至点C(O,0,1)的长弧段.
随机试题
分析辛弃疾《摸鱼儿》(更能消、几番风雨)一词比兴、象征手法的运用。
端粒是
乳腺MRI扫描的特点是
A.慢性萎缩性胃炎B.胃淀粉样变性C.Menetrier病D.疣状胃炎E.非感染性肉芽肿性胃炎病理表现为胃小凹延长扭曲,深处有囊样扩张,伴壁细胞和主细胞减少,胃黏膜层明显增厚的是
跟腱反射,是检查
钢结构的主要缺点之一是()。
发达国家的国债负担率警戒线为()。
行政许可是指行政机关根据公民、法人或者其他组织的申请,经依法审查,准予其从事特定活动的行为。根据上述定义,下列属于行政许可的是()。
在名称为Forml的窗体上设计一个菜单。要求在窗体上添加名为menu0,标题为“菜单命令”的主菜单,再添加两个名称分别为“menul”、“menu2”,标题分别为“不可用菜单项”、“上一菜单项可用”的子菜单,并且使程序运行时,menul子菜单不可用,men
HowShouldTeachersBeRewarded?[A]Weneverforgetourbestteachers—thosewhoinspireduswithadeeperunderstandingor
最新回复
(
0
)