首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,且求证:存在ξ∈(0,π),使得f’(ξ)=0.
设f(x)在[0,π]上连续,在(0,π)内可导,且求证:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2016-07-22
23
问题
设f(x)在[0,π]上连续,在(0,π)内可导,且
求证:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
首先证明f(x)在(0,π)内必有零点. 因为在(0,π)内f(x)连续,且sinx>0,所以,若无零点,则恒有f(x)>0或f(x)<0,从而有[*],与题设矛盾. 所以,f(x)在(0,π)内必有零点. 下面证明f(x)在(0,π)内零点不唯一,即至少有两个零点.用反证法.假设f(x)在(0,π)内只有一个零点x
0
,则f(x)在(0,x
0
)和(x
0
,π)上取不同的符号(且不等于零),否则与[*]矛盾.这样,函数sin(x-x
0
)f(x)在(0,x
0
)和(x
0
,π)上取相同的符号,即恒正或恒负. 那么有:[*] 从而矛盾,所以f(x)在(0,π)内至少有两个零点.于是由罗尔定理即得存在ξ∈(0,π),使得f’(ξ)0.
解析
转载请注明原文地址:https://kaotiyun.com/show/E4w4777K
0
考研数学一
相关试题推荐
设函数P(x),q(x),f(x)在区间(a,b)上连续,y1(x),y2(x),y3(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c1,c2为两个任意常数,则该方程的通解是().
微分方程y”-2y’+y=3xex+sinx的特解形式为().
计算曲面积分,其中∑是面x2+y2+z2=1的外侧.
设L是曲线y=sinx上从点(0,0)到点(π,0)的一段,计算曲线积分∫Lsin2xdx+2(x2-1)ydy=________.
设f(x,y)为连续函数,则使成立的一个充分条件是().
计算I=∮Lx2yzdx+(x2+y2)dy+(x+y+1)dz,其中L为球面x2+y2+z2=5与旋转曲面z=1+x2+y2的交线,从z轴负向看为逆时针方向.
设区域D={(x,y)||x|+|y|≤1),则二重积分I=(1-x)(1-y)(1-|x|-|y|)dxdy=________.
设有抛物线C1:x2=ay和圆C2:x2+y2=2y.(Ⅰ)确定a的取值范围,使得C1,C2交于三点O,M,P(如图);(Ⅱ)求抛物线C1与弦MP所围平面图形面积S(a)的最大值;(Ⅲ)求上述具有最大面积的平面图形绕x轴旋转一
设μ=f(x2+y2,xz),z=z(x,y),由ex+ey=ez确定,其中f二阶连续可偏导,求。
甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3.计时开始后乙追上甲的时刻记为t0(单位:s),则(
随机试题
某学校自主创设“三三六”模式(即课堂自主学习三特点——立体式、大容量、快节奏;自主学习三模块——预习、展示、反馈;课堂展示六环节——预习交流、明确目标、分组合作、展现提升、穿插巩固、达标测评)。该模式按照“10+35”的时间分配开展活动,以学生自主参与为主
反映出物量变化订单指标的表示方式为()
A.I型变态反应B.Ⅱ型变态反应C.Ⅲ型变态反应D.Ⅳ型变态反应免疫复合物性肾小球肾炎属于
关于药品进口管理的说法,正确的是
根据我国《合同法》的规定,合同生效后,当事人就报酬不明确的,应按照订立合同时()履行。
证券市场与货币市场关系密切,证券市场是货币市场上资金的需求者。()
借款人申请个人汽车贷款,须具备的贷款银行要求的条件有(‘)
通过________实现对政治经济的影响,是教育作用于政治经济的主要途径。
下列不属于四川跨越发展的基本思路的是()。
A、6:00p.m.B、9:00p.m.C、8:00p.m.D、Itisdelayed.C
最新回复
(
0
)