首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)内二阶可导,f(A)=A>0,f’(A)<0,f"(x)≤0(x>a),则f(x)在[a,+∞)内( ).
设f(x)在[a,+∞)内二阶可导,f(A)=A>0,f’(A)<0,f"(x)≤0(x>a),则f(x)在[a,+∞)内( ).
admin
2022-09-14
51
问题
设f(x)在[a,+∞)内二阶可导,f(A)=A>0,f’(A)<0,f"(x)≤0(x>a),则f(x)在[a,+∞)内( ).
选项
A、无根
B、有两个根
C、有无穷多个根
D、有且仅有一个根
答案
D
解析
f(x)=f(a)+f’(a)(x-a)+
(x-a)
2
,其中ξ介于a与x之间.
因为f(a)=A>0,
=-∞,所以f(x)在[a,+∞)上至少有一个根.
由f"(x)≤0(x>a)=>f’(x)单调不增,所以当x>a时,f’(x)≤f’(a)<0=>f(x)在[a,+∞)为单调减函数,所以根是唯一的,选(D).
转载请注明原文地址:https://kaotiyun.com/show/OTf4777K
0
考研数学二
相关试题推荐
计算χ[1+yf(χ2+y2)dχdy=_______,其中D是由y=χ3,y=1,χ=-1所围成的区域f(χ,y)是连续函数.
=_______
已知正、负惯性指数均为1的二次型f=xTAx通过合同变换x=Py化为f=yTBy,其中B=,则a=______。
设函数f(x)=ax(a>0,a≠1),则ln[f(1)f(2)…f(n)]=________.
设f(χ)可导且=2,又g(χ)=在χ=0处连续,则a=_______.
随机地向半圆0<y<(a>0)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x轴夹角小于的概率为__________.
(x2+xy-x)dxdy=_______,其中D由直线y=x,y=2x及x=1围成.
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
设函数f(x,y)可微,且对任意的x,y,都有,则使不等式f(x1,y1)<f(x2,y1)成立的一个充分条件是
设f(x)在(0,+∞)内可导,下述论断正确的是()
随机试题
土地抵押权变更登记,下列()情形的申请人包括抵押人、抵押权人和受让人。
如图4-60所示均质圆盘放在光滑水平面上受力F作用,则质心C的运动为()。
砂砾石地基的特点包括()。
下列选项中,属于当事人提起诉讼必须符合的条件的有()。
人工智能听起来很遥远,其实已经______到我们的日常工作和生活中了。人工智能的应用,让生活更便捷、更有乐趣,节约时间、解放体力,甚至未来机器将______人类进行一些基础性的劳作,这个场景令人憧憬。
快递包装标准滞后、回收循环难度大、环保意识不足,是阻碍快递包装绿色化的三大瓶颈。要打破这些瓶颈,还有大量的工作要做。比如,必须解决现行标准多为推荐性指标、约束力不强、执行有难度等问题,出台国家级的强制性标准;要解决对快递件的“五花大绑”、过度包装问题,首先
阅读下述材料,谈谈你对班主任做法的认识。一位家长在星期一发现儿子上学时磨磨蹭蹭,遂追问是怎么回事,孩子犹豫了半天才道出实情。原来在上个星期二早上,班主任老师召开全班同学会议,用无记名的方式评选3名“坏学生”,因有两名同学在最近违反了学校纪律,无可
A、 B、 C、 D、 B
ALACRITY:
A、Becausewemightbeofferedadishofinsects.B、Becausenothingbutfreshlycookedinsectsareserved.C、Becausesomeyuppies
最新回复
(
0
)