首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设是二阶常系数非齐次线性微分方程的一个特解,则( ).
设是二阶常系数非齐次线性微分方程的一个特解,则( ).
admin
2019-08-21
92
问题
设
是二阶常系数非齐次线性微分方程
的一个特解,则( ).
选项
A、a=-3,b=2,c=-1,
B、a=3,b=2,c=-1
C、a=-3,b=2,c=1,
D、a=3,b=2,c=1
答案
A
解析
本题可用不同方法解答:解法一利用二阶常系数线性微分方程解的结构与性质,求得a,b,c;解法二由解的定义将已知解代入所给微分方程,从而得到一个关于a,b,c的三元一次线性方程组,解方程组得a,b,c的值.
解法一:由题设条件知,
是已知二阶常系数非齐次线性微分方程所对应的齐次微分方程的两个特解,由此知r
1
=2,r
2
=l是特征方程,r
2
+ar+b=0的两个根.由一元二次方程根与系数的关系,得
a=-(2+1)=-3,b=2,
于是原方程化为
,
由二阶常系数非齐次线性微分方程解的结构,知y
3
=xe
x
是原方程的一个特解,将y
3
=xe
x
代入
中,得c=-1,即a=-3,b=2,c=-1.
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/E7N4777K
0
考研数学二
相关试题推荐
已知问a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
已知问a为何值时,向量组α1,α2,α3,α4线性相关;
证明:
设A是n阶正定矩阵,证明:|E+A|>1.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anξ1;
设向量组线性相关,但任意两个向量线性无关.求参数t.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
设将上述关系式表示成矩阵形式;
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
设f(χ)为n+1阶可导函数,求证:f(χ)为n次多项式的充要条件是f(n+1)(χ)≡0,f(n)(χ)≠0.
随机试题
一般不会引起肾炎的因素是()
典型心绞痛胸部疼痛的部位是
A、高良姜B、吴茱萸C、肉桂D、干姜E、附子被称为治中寒肝逆或寒郁肝脉诸痛之要药的中药是()。
下列哪一种是测定生物体内代谢的样本()。
下列属于限制人自由的行为的是()。
甲袋中有3个自球2个黑球,乙袋中有4个白球4个黑球,现从甲袋中任取2球放入乙袋,再从乙袋中取一个球放入甲袋。已知从乙袋取出的是白球,问从甲袋取出的球是一黑一白的概率为多少?
小军帮哥哥卖报纸,如果哥哥单独卖,7个半小时可以卖完,小军单独卖,12小时可以卖完,现在两人一起卖,工作效率提高了20%。当卖掉78%时,突然开始下雨,使得每小时少卖51份,结果共用了4个半小时将报纸全部卖完。那么二人一共卖了多少份报纸?()
ThesuccessofAugustusowedmuchtothecharacterofRomantheorizingaboutthestate.TheRomansdidnotproduceambitiousblu
Whatdoesthewomanmean?
Whatcausedtheboatwreck?
最新回复
(
0
)