首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设是二阶常系数非齐次线性微分方程的一个特解,则( ).
设是二阶常系数非齐次线性微分方程的一个特解,则( ).
admin
2019-08-21
89
问题
设
是二阶常系数非齐次线性微分方程
的一个特解,则( ).
选项
A、a=-3,b=2,c=-1,
B、a=3,b=2,c=-1
C、a=-3,b=2,c=1,
D、a=3,b=2,c=1
答案
A
解析
本题可用不同方法解答:解法一利用二阶常系数线性微分方程解的结构与性质,求得a,b,c;解法二由解的定义将已知解代入所给微分方程,从而得到一个关于a,b,c的三元一次线性方程组,解方程组得a,b,c的值.
解法一:由题设条件知,
是已知二阶常系数非齐次线性微分方程所对应的齐次微分方程的两个特解,由此知r
1
=2,r
2
=l是特征方程,r
2
+ar+b=0的两个根.由一元二次方程根与系数的关系,得
a=-(2+1)=-3,b=2,
于是原方程化为
,
由二阶常系数非齐次线性微分方程解的结构,知y
3
=xe
x
是原方程的一个特解,将y
3
=xe
x
代入
中,得c=-1,即a=-3,b=2,c=-1.
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/E7N4777K
0
考研数学二
相关试题推荐
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角矩阵,说明理由.
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anξ1;
设A,B均为n阶矩阵,且A+B=AB.(1)证明A-E可逆;(2)证明AB=BA.
已知问λ取何值时,β不能由α1,α2,α3线性表出.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求A的特征值和特征向量;
设函数f(x)=并记F(x)=∫0xf(t)dt(0≤x≤2),试求F(x)及∫f(x)dx.
设向量组(Ⅰ):α1,α2,α3;(Ⅱ):α1,α2,α3的秩分别为(Ⅰ)=2,秩(Ⅱ)=3.证明向量组α1,α2,α3+α4的秩等于3.
随机试题
试述《水浒传》的文学成就。
求幂级数的收敛域。
Parentswhosechildrenshowaspecialinterestinaparticularsportfeelverydifficulttomakeadecisionabouttheirchildren
在前胸计数肋骨时的重要标志是()
目前已经实施的政府采购强制性目标不包括()。
从投资费用的角度看,在投资活动中所支付的全部费用形成了固定资产和无形资产。( )
民事法律行为是公民或者法人设立、变更、终止民事权利和民事义务的合法行为。()
()位于洛阳市嵩县南部,八百里伏牛山腹地,现已查明的植物种类有1991种,被专家学者誉为“自然博物馆”。
Wearetoldthatundernocircumstances______(我们都不应该做违反人民意愿的事).
Ilovetravelingbytrain.Fast【B1】______slowlocaltrainswhichstopsateverystation,【B2】______trainstakingbusinessmen
最新回复
(
0
)