首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设是二阶常系数非齐次线性微分方程的一个特解,则( ).
设是二阶常系数非齐次线性微分方程的一个特解,则( ).
admin
2019-08-21
70
问题
设
是二阶常系数非齐次线性微分方程
的一个特解,则( ).
选项
A、a=-3,b=2,c=-1,
B、a=3,b=2,c=-1
C、a=-3,b=2,c=1,
D、a=3,b=2,c=1
答案
A
解析
本题可用不同方法解答:解法一利用二阶常系数线性微分方程解的结构与性质,求得a,b,c;解法二由解的定义将已知解代入所给微分方程,从而得到一个关于a,b,c的三元一次线性方程组,解方程组得a,b,c的值.
解法一:由题设条件知,
是已知二阶常系数非齐次线性微分方程所对应的齐次微分方程的两个特解,由此知r
1
=2,r
2
=l是特征方程,r
2
+ar+b=0的两个根.由一元二次方程根与系数的关系,得
a=-(2+1)=-3,b=2,
于是原方程化为
,
由二阶常系数非齐次线性微分方程解的结构,知y
3
=xe
x
是原方程的一个特解,将y
3
=xe
x
代入
中,得c=-1,即a=-3,b=2,c=-1.
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/E7N4777K
0
考研数学二
相关试题推荐
已知问a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0)且f(a)=0,证明:存在ξ∈(a,b),使得f(ξ)=f′(ξ).
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
假设λ为n阶可逆矩阵A的一个特征值,证明:为A的伴随矩阵A*的特征值.
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
已知矩阵A=(aij)3×3的第1行元素分别为a11=1,a12=2,a13=一1.又知(A*)T=,其中A*为A的伴随矩阵.求矩阵A.
设A,B均为n阶矩阵,且A+B=AB.(1)证明A-E可逆;(2)证明AB=BA.
已知问λ取何值时,β可由α1,α2,α3线性表出,且表达式唯一;
设z=z(x,y)是由x2一6xy+10y2一2yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
随机试题
企业在进行产品质量决策时应考虑的因素
胆固醇含量最高的脂蛋白是:
男,58岁,吸烟史30年,刺激性咳嗽并痰中带血1个月,X线检查示右肺上叶前段呈炎性征象,痰细胞学检查找到腺癌细胞,体检发现右锁骨上淋巴结肿大。为确定治疗方案,进一步的检查是
十二正经中,联系脏腑最多的经脉是
患者,女性,13岁,反复发作呼气性呼吸困难3年,引起呼气性呼吸困难最常见的病因是
某多层砌体房屋,地基土层为均质淤泥质土,fsk=70kPa,房屋基础底面积A=240mm2。采用深层搅拌桩处理地基,用直径0.7m的单孔搅拌桩(Ap=0.38m2),桩身水泥土fcu=950kPa,现场单桩载荷试验测得Ra=230kN,取桩体强度折减系数η
A公司于2011年3月8日由B公司、C公司、D公司、E公司共同以发起设立方式成立。A公司成立时的股本总额为人民币30000万元(每股面值为人民币1元,下同)。2014年8月8日A公司依法发行10000万股社会公众股,并于8月31日上市;此次发行完毕后,股本
旅游者到饭店用餐形成的服务合同属于合同的推定形式。()
现在学界正涌动着一股“亚洲热”。但在界定这类概念时,却不对所有国家民族一视同仁,所以在汉语的言语共同体之中,“亚洲”基本上是以中国为圆心的一个没画圆的圆圈,而“世界”呢,则是一幅由发达国家组成的美妙远景图。因此()
情景:你的同事张丽明天去出差,你说好要去送她,却突然接到父亲电话,得知母亲病重,要你马上回家。离开办公室时,张丽正在开会。任务:请你用英语给张丽写一张50词左右的便条。内容包括;你为什么马上要回家;明天可能
最新回复
(
0
)