首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
admin
2018-11-11
75
问题
设f(χ)在(0,1)内有定义,且e
χ
f(χ)与e
-f(χ)
在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
选项
答案
对任蒽的c∈(0,1), 当χ<c时,由e
χ
f(χ)≤e
c
f(c)及e
-f(χ)
≤e
-f(c)
得f(c)≤f(χ)≤e
c-χ
f(c), 令χ→c
-
得f(c-0)=f(c); 当χ>c时,由e
χ
f(χ)≥e
c
f(c)及e
-f(χ)
≥e
-f(c)
得f(c)≥f(χ)≥e
c-χ
f(c), 今χ→c
+
得f(c+0)=f(c), 因为f(c-0)=f(c+0)=f(c),所以f(χ)在χ=c处连续,由c的任意性得f(χ)在(0,1)内连续.
解析
转载请注明原文地址:https://kaotiyun.com/show/iDj4777K
0
考研数学二
相关试题推荐
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A;
在假设检验中,记H0为原假设,H1为备择假设,则犯第二类错误是指()
设函数f(x,y)具有二阶连续偏导数,且满足f(0,0)=1,fx’(0,0)=2,fy’(0,y)=一3以及fxx"(x,y)=y,fxy"(x,y)=x+y,求f(x,y)的表达式.
(1)证明当|x|充分小时,不等式0≤tan2x一x2≤x4成立;(2)设
已知随机变量X的概率密度为fX(x)=e-|x|,一∞<x<+∞,又设求(1)求x的分布函数;(2)求y的概率分布和分布函数;(3)计算p{Y>}。
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cx=0的基础解系.
设曲线y=y(x)过(0,0)点,M是曲线上任意一点,MP是法线段,P点在x轴上,已知MP的中点在抛物线2y2=x上,求此曲线的方程.
(1990年)下列两个积分大小关系式:∫-2-1dχ_______∫-2-1dχ
如图2.8,x轴上有一线密度为常数μ,长度为l的细杆,有一质量为m的质点到杆右端的距离为a,已知引力系数为k,则质点和细杆之间引力的大小为
随机试题
共同违反治安管理的,根据违反治安管理行为人在违反治安管理行为中所起的作用,分别处罚。
对于同质产品或需求上共性较大的产品,适宜实行
患者,男,40岁,因右侧胫骨平台骨折手术切开复位,螺钉内固定术,功能位石膏外固定4周后,拆除石膏后,发现右膝僵硬,导致膝关节屈曲受限,要求康复治疗。在实施膝关节被动运动前,必须了解最基本的信息是
下列关于建设项目用地预审,表述正确的是()。
下列选项中,不属于控制性详细规划编制内容的是()。
工程完成建设目标的标志是()。
实施积极的流动性风险管理策略的作用包括()。
电力系统中相与相之间或相与地之间,通过电弧或其他较小阻抗形成的一种非正常连接称为()。
请用不超过200字的篇幅,概括出给定资料所反映的主要问题。就给定资料所反映的主要问题,用1200字左右的篇幅,自拟标题进行论述。要求中心明确,内容充实,论述深刻,有说服力。
MyguessisthatEnglishwillretainitscurrency(通用,流行)intheworldforthenext50yearsorso,butitisdifficulttoseei
最新回复
(
0
)