首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
admin
2018-11-11
83
问题
设f(χ)在(0,1)内有定义,且e
χ
f(χ)与e
-f(χ)
在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
选项
答案
对任蒽的c∈(0,1), 当χ<c时,由e
χ
f(χ)≤e
c
f(c)及e
-f(χ)
≤e
-f(c)
得f(c)≤f(χ)≤e
c-χ
f(c), 令χ→c
-
得f(c-0)=f(c); 当χ>c时,由e
χ
f(χ)≥e
c
f(c)及e
-f(χ)
≥e
-f(c)
得f(c)≥f(χ)≥e
c-χ
f(c), 今χ→c
+
得f(c+0)=f(c), 因为f(c-0)=f(c+0)=f(c),所以f(χ)在χ=c处连续,由c的任意性得f(χ)在(0,1)内连续.
解析
转载请注明原文地址:https://kaotiyun.com/show/iDj4777K
0
考研数学二
相关试题推荐
设某种元件的使用寿命X的概率密度为其中θ>0为未知参数,X1,X2,…,Xn为来自总体X的简单随机样本,求θ的最大似然估计量,并讨论无偏性.
设随机变量X的概率密度为f(x)=,一∞<x<+∞,求Y=arctanX的概率密度。
已知随机变量X的分布函数F(x)是连续的严格单调函数,Y=1一2X,F(0.25)=0.75,P{Y≤k}=0.25,则k=__________.
设对于半空间x>0内的任意光滑有向封闭曲面∑,都有xf(x)dydz一xyf(x)dzdx一e2xdxdy=0,其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x).
已知向量组A:α1=(0,1,2,3)T,α2=(3,0,1,2)T,α3=(2,3,0,1)T;B:β1=(2,1,1,2)T,β2=(0,一2,1,1)T,β3=(4,4,1,3)T.试证B组能由A组线性表示,但A组不能由B组线性表示.
求极限.
设曲线y=y(x)过(0,0)点,M是曲线上任意一点,MP是法线段,P点在x轴上,已知MP的中点在抛物线2y2=x上,求此曲线的方程.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
设∫0yetdt+∫0χcostdt确定函数y=y(χ),则=_______.
随机试题
患者男,33岁。因“前臂被刀砍伤,致右前臂流血、疼痛、活动不利4小时”来诊。查体:伤口位于右前上臂桡侧。X线片示:未见骨折。可能出现的并发症有
奥苏伯尔将学习分为机械学习与()。
研究行政组织变革的高层次议事机构应有权根据工作需要调阅资料,有必要的财权,这表明该机构的
Itwasthesummerof1965.DeLuca,then17,visitedPeterBuck,afamilyfriend.BuckaskedDeLucaabouthisplansforthefutur
赵某以请客喝酒为名将高某灌醉,后将高某扶到一偏僻无人处,将高某的钱包(内有人民币5000元)和手机拿走。对赵某的行为定性,下列哪一选项是正确的?()
下列( )是安全管理与安全保障措施。
证面批准数量为100吨的煤炭出口许可证,若一次性报关出口散装煤炭,使用该证最多可出口_________吨。
新民主主义革命经济纲领的内容有()
2017年1月18日,国家主席习近平在日内瓦万国宫出席“共商共筑人类命运共同体”高级别会议,并发表题为《共同构建人类命运共同体》的主旨演讲。主张共同推进构建人类命运共同体伟大进程,坚持对话协商、共建共享、合作共赢、交流互鉴、绿色低碳,建设一个持久和平、普遍
Thelittleboywasunhappybecausehehadalongname--BradfordUnderwoodTimothyCharlesHoppenpop-per.Hewantedtoleaveout
最新回复
(
0
)