首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
admin
2017-12-29
66
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为三阶单位矩阵。
(Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B。
选项
答案
(Ⅰ)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=一2α
1
, 即α
1
是矩阵B的属于特征值一2的特征向量。 由关系式B=A
5
一4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=一2得B的三个特征值为μ
1
=一2,μ
2
=1,μ
3
=1。 设α
1
,α
2
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*] 得其基础解系为 [*] B的全部特征向量为 [*] 其中k
1
≠0,k
2
,k
3
不同时为零。 (Ⅱ)令P=(α
1
,α
2
,α
3
) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/EUX4777K
0
考研数学三
相关试题推荐
积分=()
设矩阵,矩阵X满足AX+E—A2+X,其中E为3阶单位矩阵,求矩阵X.
计算D5=
方程组的通解是________.
设A是n×m阶矩阵,B是m×n矩阵,E是n阶单位阵,若AB=E,证明:B的列向量组线性无关.
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量。(Ⅱ)求矩阵A。
已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关.且满足A3x=3Ax一2A2x.计算行列式∣A+E∣.
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:方程组Ax=b的任一个解均可由η,η+ξ1,η+ξ2,η+ξn-r线性表出.
随机试题
“感于哀乐,缘事而发”一语评价的是()。
Whatkindsofthingshaveactivistsdonetoprotectresearchanimals?Thepolicethinkthatuseofviolencebyanimalrightsgr
以下哪一种方法与净现值法NPV所得结论一致()。
下列对《城市规划编制资质证书》的描述,正确的是()。
根据规定,记账凭证必须附有原始凭证,但是,结账和更正错误的记账凭证可以不附原始凭证。()
甲股份有限公司(以下简称甲公司)成立于2003年9月3日,公司股票自2005年2月1日起在深圳证券交易所上市交易。公司章程规定,凡投资额在2000万元以上的投资项目须提交公司股东大会讨论决定。乙有限责任公司(以下简称乙公司)是一软件公司,甲公司董事李
已知利润对单价的敏感系数为2,为了确保下年度企业经营不亏损,单价下降的最大幅度为()。
下列表述中,体现重视矛盾特殊性的有()。
WhatkindofweatherisnormalforMarch?
A、It’sbiggerthanhehasimagined.B、It’smuchmorebrighter.C、It’ssmallerthanhehasthought.D、It’sfulloffurniture.C[听
最新回复
(
0
)