首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是秩(B)=n.
设A为m阶实对称矩阵且正定,B为m×n矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是秩(B)=n.
admin
2019-05-10
77
问题
设A为m阶实对称矩阵且正定,B为m×n矩阵,B
T
为B的转置矩阵.试证:B
T
AB为正定矩阵的充分必要条件是秩(B)=n.
选项
答案
B
T
AB正定的充要条件是秩(B)=n,证法较多.注意到B
T
AB中含互为转置的矩阵B与B
T
,用定义证之较方便.方程组BX=0[*]秩(B)=n,这是用定义证明正定性的关键.也可用特征值法证之. 证 (1)必要性 证一 用齐次方程组只有零解证之.因B
T
AB正定,由定义知,对任意X≠0,X
T
(B
T
AB)X=(BX)
T
A(BX)>0,故必有BX≠0,即BX=0只有零解,故秩(B)=n. 证二 由B
T
AB正定知,∣B
T
AB∣≠0,则秩(B
T
AB)=n.又因n=秩(B
T
AB)≤秩(B)≤n,故秩(B)=n. (2)充分性 证一 用正定的定义证之.因(B
T
AB)
T
=B
T
A
T
B=B
T
A;,故B
T
AB为对称矩阵.(正定矩阵必是实对称矩阵,所以充分性首先必证明这一点.) 由秩(B)=n知,齐次线性方程组BX=0只有零解,于是任意X
0
≠0,恒有BX
0
≠0,又因A是正定矩阵,所以对BX
0
≠0,必有(BX
0
)
T
A(BX
0
)>0. 即对[*]X
0
≠0,恒有X
0
T
(B
T
AB)X
0
>0,故B
T
AB是正定矩阵. 证二 用特征值法证之.设λ是矩阵B
T
AB的任一特征值,α是属于特征值λ的特征向量, 即B
T
ABα=λα(α≠0),用α
T
左乘等式的两端,有(Bα)
T
A(Bα)=λα
T
α. 由于秩(B)=n,α≠0知,Bα≠0,又因A正定,从而有(Ba)
T
A(Ba)>0.于是 λα
T
α=(Ba)
T
A(Ba)>0. 而α
T
α=∣∣α∣∣
2
>0,故特征值λ>0.又 B
T
AB为实对称矩阵,故B
T
AB正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/EVV4777K
0
考研数学二
相关试题推荐
设f(χ)=∫0tanχarctant2dt,g(χ)=χ-sinχ,当χ→0时,比较这两个无穷小的关系.
设三阶矩阵A的特征值为2,3,λ,若行列式|2A|=-48,则λ=_______.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设=b其中a,b为常数,则().
设二次型f(χ1,χ2,χ3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
求函数z=χ2+2y2-χ2y2在D={(χ,y)|χ2+y2≤4,y≥0}上的最小值与最大值.
设f(χ)二阶连续可导且f(0)=f′(0)=0,f〞(χ)>0.曲线y=f(χ)上任一点(χ,f(χ))(χ≠0)处作切线,此切线在χ轴上的截距为u,求.
yy〞=1+y′2满足初始条件y(0)=1,y′(0)=0的解为_______.
[2017年]若函数f(x)=在x=0处连续,则().
随机试题
单位工程施工进度计划步骤包括:①计算工程量;②计算劳动量和机械分班制;③确定施工顺序;④确定工作项目的持续时间;⑤绘制、检查和调整施工进度计划;⑥划分工作项目,它们正确的顺序是()。
套管法(沉管法)施工砂桩,砂桩宜顺线路方向分段逐排打设,每段长度不宜大于()。
下列符合会计职业道德的“提高技能”要求的是()。
()是指税收法律关系的主体因违反税收法律规范所应承担的法律后果。
建立和维护市场秩序的基本条件有()。
计算机直接制版的工艺优势表现为()等。
我国最常用的教学组织形式是().
【星室法庭】南京大学2004年世界史真题
Thepurposeofthepassageis______.Whichofthefollowingisnottree?
在Cisco路由器上,用扩展访问控制列表封禁IP地址为211.102.33.24的主机,正确的配置语句是()。
最新回复
(
0
)