首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组是
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组是
admin
2019-03-11
40
问题
设A是5×4矩阵,A=(α
1
,α
2
,α
3
,α
4
),若η
1
=(1,1,-2,1)
T
,η
2
=(0,1,0,1)
T
是Ax=0的基础解系,则A的列向量组的极大线性无关组是
选项
A、α
1
,α
3
.
B、α
2
,α
4
.
C、α
2
,α
3
.
D、α
1
,α
2
,α
4
.
答案
C
解析
由Aη
1
=0,知α
1
+α
2
-2α
3
+α
4
=0. ①
由Aη
2
=0,知α
2
+α
4
=0. ②
因为n-r(A)=2,故必有r(a)=2.所以可排除(D).
由②知,α
2
,α
4
线性相关.故应排除(B).
把②代入①得α
1
-2α
3
=0,即α
1
,α
3
线性相关,排除(A).
如果α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
,α
4
)=r(-2α
3
,α
2
,α
3
,-α
2
)=r(α
2
,α
3
)=1与r(A)=2相矛盾.所以选(C).
转载请注明原文地址:https://kaotiyun.com/show/EWP4777K
0
考研数学三
相关试题推荐
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
设f(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是()
设Fn(x)是经验分布函数,基于来自总体X的容量为n的简单随机样本,F(x)是总体X的分布函数,则下列命题错误的为:Fn(x)对于每个给定的x,().
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,则a=___________.
已知离散型随机变量X服从参数为2的泊松分布,即P{x=k}=,k=0,1,2,…,则随机变量Z=3X-2的数学期望EZ=________.
求下列各函数的偏导数与全微分:
设函数f(x)在x=0的某一邻域内具有二阶连续导数,且f(0)=0,fˊ(0)=0,证明绝对收敛.
若y1,y2,y3是二阶非齐次线性微分方程(1)的线性无关的解,试用y1,y2,y3表达方程(1)的通解.y〞+P(x)yˊ+Q(x)y=f(x)(1)
随机试题
文字处理软件是一种计算机系统软件,实现文字的电子化,对文字进行编辑、排版和打印。()
应激相关障碍患者应保证每天液体的入量在【】
Itisestimatedthatabout80%oftheworld’spopulationcannotaffordtohaveproperfood,housingormedicalcare.
采用食醋熏蒸进行家庭居室空气消毒时,每立方米空间应用食醋量为
依据有效市场假设理论,可以将证券市场区分为( )。
流通信息按其产生过程划分,可分为()。
甲公司与股权投资的相关资料如下:(1)甲公司原持有乙公司30%的股权,并能够对乙公司施加重大影响。2019年1月1日,甲公司支付银行存款13000万元,进一步取得乙公司50%的股权,并能够控制乙公司的财务经营决策。原投资账面价值为5400万元(包括投资成
ABC是一家以生产干巾和纸巾而发展起来的企业。经过20多年的发展,该企业已经在家庭生活用纸方面(包括纸尿裤),成为国内该行业的老大,年销售额达百亿人民币。虽然该行业是高度竞争的行业。但该企业凭借着“传统渠道”优势——即全国有35万家终端销售点(如小卖部),
时光,在回首瞻望中兜兜转转,几十年光阴犹如昼夜般消逝,匆匆的时光流逝,在深夜总会辗转无眠。是______流年里的故事,还是在______岁月里稍纵即逝的风景,明明只是______,心却在不觉间已沧桑。填入画横线部分最恰当的一项是:
现在,随着人们对橡胶认识的深入,橡胶技术也________,不论是天然橡胶还是人工合成橡胶,都已经成为我们生活的必需品。没有一种原材料像橡胶这样,________了我们生活的方方面面:从家居日用品到体育娱乐制品,从医疗领域到军事工业,都随处可见橡胶制品
最新回复
(
0
)